Glendinning and Sidorov discovered an important feature of the Komornik–Loreti constant q′≈ 1.78723 in non-integer base expansions on two-letter alphabets: in bases 1 < q< q′ only countably numbers have unique expansions, while for q≥ q′ there is a continuum of such numbers. We investigate the analogous question for ternary alphabets.

Komornik, V., Pedicini, M. (2017). Critical bases for ternary alphabets. ACTA MATHEMATICA HUNGARICA, 152(1), 25-57 [10.1007/s10474-017-0706-6].

Critical bases for ternary alphabets

PEDICINI, MARCO
2017-01-01

Abstract

Glendinning and Sidorov discovered an important feature of the Komornik–Loreti constant q′≈ 1.78723 in non-integer base expansions on two-letter alphabets: in bases 1 < q< q′ only countably numbers have unique expansions, while for q≥ q′ there is a continuum of such numbers. We investigate the analogous question for ternary alphabets.
2017
Komornik, V., Pedicini, M. (2017). Critical bases for ternary alphabets. ACTA MATHEMATICA HUNGARICA, 152(1), 25-57 [10.1007/s10474-017-0706-6].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/320023
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact