In this paper we propose a method to couple two or more explicit numerical schemes approximating the same time-dependent PDE, aiming at creating a new scheme which inherits advan- tages of the original ones. We consider both advection equations and nonlinear conservation laws. By coupling a macroscopic (Eulerian) scheme with a microscopic (Lagrangian) scheme, we get a new kind of multiscale numerical method.

Cacace, S., Cristiani, E., Ferretti, R. (2017). Blended numerical schemes for the advection equations and conservation laws. MODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE, 51(3), 997-1019 [10.1051/m2an/2016047].

Blended numerical schemes for the advection equations and conservation laws

S. Cacace;FERRETTI, Roberto
2017-01-01

Abstract

In this paper we propose a method to couple two or more explicit numerical schemes approximating the same time-dependent PDE, aiming at creating a new scheme which inherits advan- tages of the original ones. We consider both advection equations and nonlinear conservation laws. By coupling a macroscopic (Eulerian) scheme with a microscopic (Lagrangian) scheme, we get a new kind of multiscale numerical method.
2017
Cacace, S., Cristiani, E., Ferretti, R. (2017). Blended numerical schemes for the advection equations and conservation laws. MODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE, 51(3), 997-1019 [10.1051/m2an/2016047].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/320744
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact