Left ventricle and left atrium are and have been practically always analyzed separately in common clinically and non-clinically oriented cardiovascular investigations. Both classic and speckle tracking echocardiographic data contributed to the knowledge about deformational impairments occurring in systo-diastolic differences. Recently new trajectory based approaches allowed a greater awareness about the entire left ventricle or left atrium revolution and on their deficiencies that take place in presence of hypertrophic cardiomyopathy. However, surprisingly, the concomitant function of the two left heart chambers has not been analyzed for their geometrical/mechanical relationship. For the first time we study here, by acquiring left ventricle and left atrial geometries on the same heartbeat, the trajectory attributes of the entire left heart treated as a whole shape and the shape covariation of its two subunits. We contrasted healthy subjects with patients affected by hypertrophic cardiomyopathy. We found impaired left heart trajectory mainly in terms of orientation and size. More importantly, we found profound differences in the direction of morphological covariation of left ventricle and left atrium. These findings open to new perspectives in pathophysiological evaluation of different diseases by allowing the appreciation of concomitant functioning of both left heart whole geometry and of its two chambers.

Piras, P., Torromeo, C., Evangelista, A., Gabriele, S., Esposito, G., Nardinocchi, P., et al. (2017). Homeostatic Left Heart integration and disintegration links atrio-ventricular covariation's dyshomeostasis in Hypertrophic Cardiomyopathy. SCIENTIFIC REPORTS, 7(1), 6257 [10.1038/s41598-017-06189-w].

Homeostatic Left Heart integration and disintegration links atrio-ventricular covariation's dyshomeostasis in Hypertrophic Cardiomyopathy

Piras, Paolo;Gabriele, Stefano;Nardinocchi, Paola;Teresi, Luciano;Varano, Valerio;
2017-01-01

Abstract

Left ventricle and left atrium are and have been practically always analyzed separately in common clinically and non-clinically oriented cardiovascular investigations. Both classic and speckle tracking echocardiographic data contributed to the knowledge about deformational impairments occurring in systo-diastolic differences. Recently new trajectory based approaches allowed a greater awareness about the entire left ventricle or left atrium revolution and on their deficiencies that take place in presence of hypertrophic cardiomyopathy. However, surprisingly, the concomitant function of the two left heart chambers has not been analyzed for their geometrical/mechanical relationship. For the first time we study here, by acquiring left ventricle and left atrial geometries on the same heartbeat, the trajectory attributes of the entire left heart treated as a whole shape and the shape covariation of its two subunits. We contrasted healthy subjects with patients affected by hypertrophic cardiomyopathy. We found impaired left heart trajectory mainly in terms of orientation and size. More importantly, we found profound differences in the direction of morphological covariation of left ventricle and left atrium. These findings open to new perspectives in pathophysiological evaluation of different diseases by allowing the appreciation of concomitant functioning of both left heart whole geometry and of its two chambers.
2017
Piras, P., Torromeo, C., Evangelista, A., Gabriele, S., Esposito, G., Nardinocchi, P., et al. (2017). Homeostatic Left Heart integration and disintegration links atrio-ventricular covariation's dyshomeostasis in Hypertrophic Cardiomyopathy. SCIENTIFIC REPORTS, 7(1), 6257 [10.1038/s41598-017-06189-w].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/326447
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 12
social impact