From KAM theory it follows that the measure of phase points which do not lie on Diophantine, Lagrangian, âprimaryâ tori in a nearly integrable, real-analytic Hamiltonian system is (Formula presented.), if (Formula presented.) is the size of the perturbation. In this paper we discuss how the constant in front of (Formula presented.) depends on the unperturbed system and in particular on the phase-space domain.
Biasco, L., Chierchia, L. (2018). Explicit estimates on the measure of primary KAM tori. ANNALI DI MATEMATICA PURA ED APPLICATA, 197(1), 1-21 [10.1007/s10231-017-0678-8].
Explicit estimates on the measure of primary KAM tori
Biasco, L.;Chierchia, L.
2018-01-01
Abstract
From KAM theory it follows that the measure of phase points which do not lie on Diophantine, Lagrangian, âprimaryâ tori in a nearly integrable, real-analytic Hamiltonian system is (Formula presented.), if (Formula presented.) is the size of the perturbation. In this paper we discuss how the constant in front of (Formula presented.) depends on the unperturbed system and in particular on the phase-space domain.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
1612.01903.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
DRM non definito
Dimensione
348.92 kB
Formato
Adobe PDF
|
348.92 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.