From KAM theory it follows that the measure of phase points which do not lie on Diophantine, Lagrangian, “primary” tori in a nearly integrable, real-analytic Hamiltonian system is (Formula presented.), if (Formula presented.) is the size of the perturbation. In this paper we discuss how the constant in front of (Formula presented.) depends on the unperturbed system and in particular on the phase-space domain.

Biasco, L., & Chierchia, L. (2018). Explicit estimates on the measure of primary KAM tori. ANNALI DI MATEMATICA PURA ED APPLICATA, 197(1), 1-21 [10.1007/s10231-017-0678-8].

Explicit estimates on the measure of primary KAM tori

Biasco, L.;Chierchia, L.
2018

Abstract

From KAM theory it follows that the measure of phase points which do not lie on Diophantine, Lagrangian, “primary” tori in a nearly integrable, real-analytic Hamiltonian system is (Formula presented.), if (Formula presented.) is the size of the perturbation. In this paper we discuss how the constant in front of (Formula presented.) depends on the unperturbed system and in particular on the phase-space domain.
Biasco, L., & Chierchia, L. (2018). Explicit estimates on the measure of primary KAM tori. ANNALI DI MATEMATICA PURA ED APPLICATA, 197(1), 1-21 [10.1007/s10231-017-0678-8].
File in questo prodotto:
File Dimensione Formato  
1612.01903.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 348.92 kB
Formato Adobe PDF
348.92 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11590/327025
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact