We discuss the spectrum of the different components in the astrophysical neutrino flux reaching the Earth, and the possible contribution of each component to the high-energy IceCube data. We show that the diffuse flux from cosmic ray (CR) interactions with gas in our galaxy implies just two events among the 54-event sample. We argue that the neutrino flux from CR interactions in the intergalactic (intracluster) space depends critically on the transport parameter δ describing the energy dependence in the diffusion coefficient of galactic CRs. Our analysis motivates a neutrino spectrum with a drop at PeV energies that fits the data well, including the non-observation of the Glashow resonance at 6.3 PeV. We also show that a CR flux described by an unbroken power law may produce a neutrino flux with interesting spectral features (bumps and breaks) related to changes in the CR composition.

Carceller, J.M., Illana, J.I., Masip, M., Meloni, D. (2018). Origin of the High-energy Neutrino Flux at IceCube. THE ASTROPHYSICAL JOURNAL, 852(1), 59 [10.3847/1538-4357/aa9d94].

Origin of the High-energy Neutrino Flux at IceCube

Meloni, D.
2018

Abstract

We discuss the spectrum of the different components in the astrophysical neutrino flux reaching the Earth, and the possible contribution of each component to the high-energy IceCube data. We show that the diffuse flux from cosmic ray (CR) interactions with gas in our galaxy implies just two events among the 54-event sample. We argue that the neutrino flux from CR interactions in the intergalactic (intracluster) space depends critically on the transport parameter δ describing the energy dependence in the diffusion coefficient of galactic CRs. Our analysis motivates a neutrino spectrum with a drop at PeV energies that fits the data well, including the non-observation of the Glashow resonance at 6.3 PeV. We also show that a CR flux described by an unbroken power law may produce a neutrino flux with interesting spectral features (bumps and breaks) related to changes in the CR composition.
Carceller, J.M., Illana, J.I., Masip, M., Meloni, D. (2018). Origin of the High-energy Neutrino Flux at IceCube. THE ASTROPHYSICAL JOURNAL, 852(1), 59 [10.3847/1538-4357/aa9d94].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/327724
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact