The Sila Massif is a small part of an orogenic wedge that sits on top of the narrow and active Calabrian subduction zone. The topography of the Sila Massif is characterized by a plateau region whose age and origin has been long debated. Here we integrate new apatite (U-Th)/He data from the eastern flank of the massif with existing apatite fission-track (AFT) data, to constrain the topographic evolution of the massif. The new AHe ages range from 9.7 Ma to 49.8 Ma and overlap the AFT ages indicating that a phase of rapid Cenozoic exhumation was followed by an abrupt decrease of the exhumation rate. A steep/inverse AFT age-elevation relationship from a vertical profile on top of the summit area of the north-eastern Sila may records post-exhumation relief degradation, which is consistent with the low-relief upland topography. To test this hypothesis we performed inverse numerical modeling using Pecube code. Integrating the new AHe ages and the numerical modelling results with the geological constraints we propose a new model for the regional topographic evolution from 30 Ma to the present.

Olivetti, V., Balestrieri, M.L., Faccenna, C., Stuart, F.M. (2017). Dating the topography through thermochronology: Application of Pecube code to inverted vertical profile in the eastern Sila Massif, southern Italy. ITALIAN JOURNAL OF GEOSCIENCES, 136(3), 321-336 [10.3301/IJG.2016.09].

Dating the topography through thermochronology: Application of Pecube code to inverted vertical profile in the eastern Sila Massif, southern Italy

Olivetti, Valerio;Faccenna, Claudio
;
2017-01-01

Abstract

The Sila Massif is a small part of an orogenic wedge that sits on top of the narrow and active Calabrian subduction zone. The topography of the Sila Massif is characterized by a plateau region whose age and origin has been long debated. Here we integrate new apatite (U-Th)/He data from the eastern flank of the massif with existing apatite fission-track (AFT) data, to constrain the topographic evolution of the massif. The new AHe ages range from 9.7 Ma to 49.8 Ma and overlap the AFT ages indicating that a phase of rapid Cenozoic exhumation was followed by an abrupt decrease of the exhumation rate. A steep/inverse AFT age-elevation relationship from a vertical profile on top of the summit area of the north-eastern Sila may records post-exhumation relief degradation, which is consistent with the low-relief upland topography. To test this hypothesis we performed inverse numerical modeling using Pecube code. Integrating the new AHe ages and the numerical modelling results with the geological constraints we propose a new model for the regional topographic evolution from 30 Ma to the present.
2017
Olivetti, V., Balestrieri, M.L., Faccenna, C., Stuart, F.M. (2017). Dating the topography through thermochronology: Application of Pecube code to inverted vertical profile in the eastern Sila Massif, southern Italy. ITALIAN JOURNAL OF GEOSCIENCES, 136(3), 321-336 [10.3301/IJG.2016.09].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/329311
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact