In this paper we prove a Moser–Trudinger inequality for the Euler–Lagrange functional of general singular Liouville systems on a compact surface. We characterize the values of the parameters which yield coercivity for the functional, hence the existence of energy-minimizing solutions for the system, and we give necessary conditions for boundedness from below. We also provide a sharp inequality under assuming the coefficients of the system to be non-positive outside the diagonal. The proofs use a concentration-compactness alternative, Pohožaev-type identities and blow-up analysis.

Battaglia, L. (2016). Moserâ Trudinger inequalities for singular Liouville systems. MATHEMATISCHE ZEITSCHRIFT, 282(3-4), 1169-1190 [10.1007/s00209-015-1584-7].

Moser–Trudinger inequalities for singular Liouville systems

Battaglia, Luca
2016-01-01

Abstract

In this paper we prove a Moser–Trudinger inequality for the Euler–Lagrange functional of general singular Liouville systems on a compact surface. We characterize the values of the parameters which yield coercivity for the functional, hence the existence of energy-minimizing solutions for the system, and we give necessary conditions for boundedness from below. We also provide a sharp inequality under assuming the coefficients of the system to be non-positive outside the diagonal. The proofs use a concentration-compactness alternative, Pohožaev-type identities and blow-up analysis.
2016
Battaglia, L. (2016). Moserâ Trudinger inequalities for singular Liouville systems. MATHEMATISCHE ZEITSCHRIFT, 282(3-4), 1169-1190 [10.1007/s00209-015-1584-7].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/330866
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact