Let Λ be a lattice in, and let be a definable family in an O-minimal structure over. We give sharp estimates for the number of lattice points in the fibers. Along the way, we show that for any subspace of dimension j>0 the j-volume of the orthogonal projection of ZTto Σ is, up to a constant depending only on the family Z, bounded by the maximal j-dimensional volume of the orthogonal projections to the j-dimensional coordinate subspaces.

Barroero, F., Widmer, M. (2014). Counting lattice points and o-minimal structures. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014(18), 4932-4957 [10.1093/imrn/rnt102].

Counting lattice points and o-minimal structures

Barroero F.;
2014-01-01

Abstract

Let Λ be a lattice in, and let be a definable family in an O-minimal structure over. We give sharp estimates for the number of lattice points in the fibers. Along the way, we show that for any subspace of dimension j>0 the j-volume of the orthogonal projection of ZTto Σ is, up to a constant depending only on the family Z, bounded by the maximal j-dimensional volume of the orthogonal projections to the j-dimensional coordinate subspaces.
2014
Barroero, F., Widmer, M. (2014). Counting lattice points and o-minimal structures. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014(18), 4932-4957 [10.1093/imrn/rnt102].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/341049
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 26
social impact