Motivated by recent work of Masser and Zannier on simultaneous torsion on the Legendre elliptic curve Eλof equation Y2= X (X − 1)(X − λ), we prove that, given n linearly independent points P1(λ),…, Pn(λ) on Eλwith coordinates in Q(λ), there are at most finitely many complex numbers λ0 such that the points P1(λ0),…, Pn(λ0) satisfy two independent relations on Eλ0. This is a special case of conjectures about unlikely intersections on families of abelian varieties.

Barroero, F., Capuano, L. (2016). Linear relations in families of powers of elliptic curves. ALGEBRA & NUMBER THEORY, 10(1), 195-214 [10.2140/ant.2016.10.195].

Linear relations in families of powers of elliptic curves

Barroero, Fabrizio;Capuano, Laura
2016-01-01

Abstract

Motivated by recent work of Masser and Zannier on simultaneous torsion on the Legendre elliptic curve Eλof equation Y2= X (X − 1)(X − λ), we prove that, given n linearly independent points P1(λ),…, Pn(λ) on Eλwith coordinates in Q(λ), there are at most finitely many complex numbers λ0 such that the points P1(λ0),…, Pn(λ0) satisfy two independent relations on Eλ0. This is a special case of conjectures about unlikely intersections on families of abelian varieties.
2016
Barroero, F., Capuano, L. (2016). Linear relations in families of powers of elliptic curves. ALGEBRA & NUMBER THEORY, 10(1), 195-214 [10.2140/ant.2016.10.195].
File in questo prodotto:
File Dimensione Formato  
linear_relations.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 385.86 kB
Formato Adobe PDF
385.86 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/341979
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 11
social impact