Variational methods in quantum mechanics are customarily presented as invaluable techniques to find approximate estimates of ground state energies. In the present paper a short catalogue of different celebrated potential distributions (both 1D and 3D), for which an exact and complete (energy and wavefunction) ground state determination can be achieved in an elementary way, is illustrated. No previous knowledge of calculus of variations is required. Rather, in all presented cases the exact energy functional minimization is achieved by using only a couple of simple mathematical tricks: 'completion of square' and integration by parts. This makes our approach particularly suitable for undergraduates. Moreover, the key role played by particle localization is emphasized through the entire analysis. This gentle introduction to the variational method could also be potentially attractive for more expert students as a possible elementary route toward a rather advanced topic on quantum mechanics: the factorization method. Such an unexpected connection is outlined in the final part of the paper.

Borghi, R. (2018). The variational method in quantum mechanics: An elementary introduction. EUROPEAN JOURNAL OF PHYSICS, 39(3), 035410 [10.1088/1361-6404/aaafd9].

The variational method in quantum mechanics: An elementary introduction

Borghi, Riccardo
2018-01-01

Abstract

Variational methods in quantum mechanics are customarily presented as invaluable techniques to find approximate estimates of ground state energies. In the present paper a short catalogue of different celebrated potential distributions (both 1D and 3D), for which an exact and complete (energy and wavefunction) ground state determination can be achieved in an elementary way, is illustrated. No previous knowledge of calculus of variations is required. Rather, in all presented cases the exact energy functional minimization is achieved by using only a couple of simple mathematical tricks: 'completion of square' and integration by parts. This makes our approach particularly suitable for undergraduates. Moreover, the key role played by particle localization is emphasized through the entire analysis. This gentle introduction to the variational method could also be potentially attractive for more expert students as a possible elementary route toward a rather advanced topic on quantum mechanics: the factorization method. Such an unexpected connection is outlined in the final part of the paper.
2018
Borghi, R. (2018). The variational method in quantum mechanics: An elementary introduction. EUROPEAN JOURNAL OF PHYSICS, 39(3), 035410 [10.1088/1361-6404/aaafd9].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/349753
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact