The study of glacial evidence in the Gran Sasso Massif of the Central Apennines, Italy, has allowed the last maximum advance and the subsequent stadial phases to be dated and the mean annual temperature and quantity of precipitation in the form of snow to be assessed for a number of periods. The glaciers probably reached their maximum extension (Campo Imperatore Stade) ca. 22,600 14C yr B.P. and started to retreat ca. 21,000 yr B.P., leaving behind three recessional moraines. After a first interstade (Fornaca Interstade), the Fontari Stade appears to have taken place shortly after 16,000 yr ago. Ca. 15,000 yr ago the glacier started retreating, leaving behind four more recessional moraines. An interstade (Venacquaro Interstade) preceded the Mount Aquila Stade, datable at ca. 11,000 yr B.P. A strong correlation is evident between the glacial phases on land and the isotopic variations in cores from the Tyrrhenian Sea. © 1997 University of Washington.
Giraudi, C., Frezzotti, M. (1997). Late Pleistocene Glacial Events in the Central Apennines, Italy. QUATERNARY RESEARCH, 48(3), 280-290 [10.1006/qres.1997.1928].
Late Pleistocene Glacial Events in the Central Apennines, Italy
Frezzotti M.Writing – Original Draft Preparation
1997-01-01
Abstract
The study of glacial evidence in the Gran Sasso Massif of the Central Apennines, Italy, has allowed the last maximum advance and the subsequent stadial phases to be dated and the mean annual temperature and quantity of precipitation in the form of snow to be assessed for a number of periods. The glaciers probably reached their maximum extension (Campo Imperatore Stade) ca. 22,600 14C yr B.P. and started to retreat ca. 21,000 yr B.P., leaving behind three recessional moraines. After a first interstade (Fornaca Interstade), the Fontari Stade appears to have taken place shortly after 16,000 yr ago. Ca. 15,000 yr ago the glacier started retreating, leaving behind four more recessional moraines. An interstade (Venacquaro Interstade) preceded the Mount Aquila Stade, datable at ca. 11,000 yr B.P. A strong correlation is evident between the glacial phases on land and the isotopic variations in cores from the Tyrrhenian Sea. © 1997 University of Washington.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.