In this paper we deal with the problem of detecting an extended target embedded in homogeneous Gaussian interference with unknown but structured covariance matrix. We model the possible target echo, from each range bin under test, as a deterministic signal with an unknown scaling factor accounting for the target response. At the design stage, we exploit some a-priori knowledge about the operating environment enforcing the inverse interference plus noise covariance matrix to belong to a set described via unitary invariant continuous functions. Hence, we derive the constrained Maximum Likelihood (ML) estimates of the unknown parameters, under both the H0and H1hypotheses, and design the Generalized Likelihood Ratio Test (GLRT) for the considered decision problem. At the analysis stage, we assess the performance of the devised GLRT for some covariance matrix uncertainty sets of practical relevance both for spatial and Doppler processing. The results highlight that correct use of the a-priori knowledge can lead to a detection performance quite close to the optimum receiver which supposes the perfect knowledge of the interference plus noise covariance matrix. © 1991-2012 IEEE.
Aubry, A., De Maio, A., Pallotta, L., Farina, A. (2013). Radar detection of distributed targets in homogeneous interference whose inverse covariance structure is defined via unitary invariant functions. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 61(20), 4949-4961 [10.1109/TSP.2013.2273444].
Radar detection of distributed targets in homogeneous interference whose inverse covariance structure is defined via unitary invariant functions
Pallotta L.;
2013-01-01
Abstract
In this paper we deal with the problem of detecting an extended target embedded in homogeneous Gaussian interference with unknown but structured covariance matrix. We model the possible target echo, from each range bin under test, as a deterministic signal with an unknown scaling factor accounting for the target response. At the design stage, we exploit some a-priori knowledge about the operating environment enforcing the inverse interference plus noise covariance matrix to belong to a set described via unitary invariant continuous functions. Hence, we derive the constrained Maximum Likelihood (ML) estimates of the unknown parameters, under both the H0and H1hypotheses, and design the Generalized Likelihood Ratio Test (GLRT) for the considered decision problem. At the analysis stage, we assess the performance of the devised GLRT for some covariance matrix uncertainty sets of practical relevance both for spatial and Doppler processing. The results highlight that correct use of the a-priori knowledge can lead to a detection performance quite close to the optimum receiver which supposes the perfect knowledge of the interference plus noise covariance matrix. © 1991-2012 IEEE.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.