Telomere length is maintained by either telomerase, a reverse transcriptase, or alternative lengthening of telomeres (ALT), a mechanism that utilizes homologous recombination (HR) proteins. Since access to DNA for HR enzymes is regulated by the chromatin status, it is expected that telomere elongation is linked to epigenetic modifications. The aim of this review is to elucidate the epigenetic features of ALT-positive cells. In order to do this, it is first necessary to understand the telomeric chromatin peculiarities. So far, the epigenetic nature of telomeres is still controversial: some authors describe them as heterochromatic, while for others, they are euchromatic. Similarly, ALT activity should be characterized by the loss (according to most researchers) or formation (as claimed by a minority) of heterochromatin in telomeres. Besides reviewing the main works in this field and the most recent findings, some hypotheses involving the role of telomere non-canonical sequences and the possible spatial heterogeneity of telomeres are given.

Udroiu, I., Sgura, A. (2020). Alternative lengthening of telomeres and chromatin status. GENES, 11(1), 45 [10.3390/genes11010045].

Alternative lengthening of telomeres and chromatin status

Udroiu I.
;
Sgura A.
2020-01-01

Abstract

Telomere length is maintained by either telomerase, a reverse transcriptase, or alternative lengthening of telomeres (ALT), a mechanism that utilizes homologous recombination (HR) proteins. Since access to DNA for HR enzymes is regulated by the chromatin status, it is expected that telomere elongation is linked to epigenetic modifications. The aim of this review is to elucidate the epigenetic features of ALT-positive cells. In order to do this, it is first necessary to understand the telomeric chromatin peculiarities. So far, the epigenetic nature of telomeres is still controversial: some authors describe them as heterochromatic, while for others, they are euchromatic. Similarly, ALT activity should be characterized by the loss (according to most researchers) or formation (as claimed by a minority) of heterochromatin in telomeres. Besides reviewing the main works in this field and the most recent findings, some hypotheses involving the role of telomere non-canonical sequences and the possible spatial heterogeneity of telomeres are given.
2020
Udroiu, I., Sgura, A. (2020). Alternative lengthening of telomeres and chromatin status. GENES, 11(1), 45 [10.3390/genes11010045].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/361193
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 11
social impact