We rigorously show the existence of a rotationally and centrally symmetric “lens-shaped” cluster of three surfaces, meeting at a smooth common circle, forming equal angles of 120 ∘, self-shrinking under the motion by mean curvature.

Baldi, P., Haus, E., Mantegazza, C. (2019). Existence of a lens-shaped cluster of surfaces self-shrinking by mean curvature. MATHEMATISCHE ANNALEN, 375(3-4), 1857-1881 [10.1007/s00208-019-01890-9].

Existence of a lens-shaped cluster of surfaces self-shrinking by mean curvature

Baldi P.;Haus E.;Mantegazza C.
2019-01-01

Abstract

We rigorously show the existence of a rotationally and centrally symmetric “lens-shaped” cluster of three surfaces, meeting at a smooth common circle, forming equal angles of 120 ∘, self-shrinking under the motion by mean curvature.
2019
Baldi, P., Haus, E., Mantegazza, C. (2019). Existence of a lens-shaped cluster of surfaces self-shrinking by mean curvature. MATHEMATISCHE ANNALEN, 375(3-4), 1857-1881 [10.1007/s00208-019-01890-9].
File in questo prodotto:
File Dimensione Formato  
SelfShrinkingCluster2.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Documento in Post-print
Dimensione 297.32 kB
Formato Adobe PDF
297.32 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/362195
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact