In order to maintain the highest operational safety standards, it is crucial that surface and structural deformation caused by geophysical natural hazards and human-related activities in linear transport networks (such as highways and railways) are monitored and evaluated. Today, Ground Penetrating Radar (GPR) is a well-established technology among the available non-destructive testing (NDT) methods for the collection of ground-based information. Concurrently, the space-borne Interferometric Synthetic Aperture Radar (InSAR) is another well-known viable methodology for large-scale investigations of road network surface deformations. However, it is fair to comment that the potential of this method in the area of transport infrastructure monitoring has not yet been sufficiently explored. Within this context, this research demonstrates the viability of integrating InSAR and GPR for monitoring transport assets at network level. The main theoretical and working principles of the two above-mentioned methodologies have been presented and discussed, and the advantage and drawbacks of each technique have then been analysed. The final section of the paper examines a recent experimental activity carried out on a real-life railway located in Puglia, Southern Italy. Test outcomes prove the viability of the proposed data fusion methodology for monitoring the health of transport assets at network level.

Tosti, F., Gagliardi, V., D'Amico, F., Alani, A.M. (2020). Transport infrastructure monitoring by data fusion of GPR and SAR imagery information. TRANSPORTATION RESEARCH PROCEDIA, 45 (2020), 771-778 [10.1016/j.trpro.2020.02.101].

Transport infrastructure monitoring by data fusion of GPR and SAR imagery information

F. Tosti
;
V. Gagliardi;F. D'Amico;
2020-01-01

Abstract

In order to maintain the highest operational safety standards, it is crucial that surface and structural deformation caused by geophysical natural hazards and human-related activities in linear transport networks (such as highways and railways) are monitored and evaluated. Today, Ground Penetrating Radar (GPR) is a well-established technology among the available non-destructive testing (NDT) methods for the collection of ground-based information. Concurrently, the space-borne Interferometric Synthetic Aperture Radar (InSAR) is another well-known viable methodology for large-scale investigations of road network surface deformations. However, it is fair to comment that the potential of this method in the area of transport infrastructure monitoring has not yet been sufficiently explored. Within this context, this research demonstrates the viability of integrating InSAR and GPR for monitoring transport assets at network level. The main theoretical and working principles of the two above-mentioned methodologies have been presented and discussed, and the advantage and drawbacks of each technique have then been analysed. The final section of the paper examines a recent experimental activity carried out on a real-life railway located in Puglia, Southern Italy. Test outcomes prove the viability of the proposed data fusion methodology for monitoring the health of transport assets at network level.
2020
Tosti, F., Gagliardi, V., D'Amico, F., Alani, A.M. (2020). Transport infrastructure monitoring by data fusion of GPR and SAR imagery information. TRANSPORTATION RESEARCH PROCEDIA, 45 (2020), 771-778 [10.1016/j.trpro.2020.02.101].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/363268
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 41
  • ???jsp.display-item.citation.isi??? ND
social impact