Air pollution represents the biggest environmental risk for health. It is so widespread and it represents one of the main problems of the worldwide, especially because it is emitted by so many different types of sources. The pollutants can originate directly by exhausted or they can be formed because of the reaction with the atmosphere. The first one includes particulate matter and gaseous pollutants such as sulfur oxides, nitrogen oxides, and carbon oxides. The second one includes the ozone formed from nitrogen oxides and hydrocarbons, and particulate sulfate and nitrate aerosols created in the atmosphere from sulfur and nitrogen oxide gases. During the entire life course, people are exposed to the pollutants and suffer from different consequences depending on the age. The first nine month of life are generally recognized as more critical than latter time periods. The mortality associated to air pollutant exposure is main related to the concentrations of NOx, ozone, carbon monoxide, sulfur dioxides and particular matter. More than 92% of the world's population lives in places where air quality levels exceed the standards. In 2012, one out of every nine deaths was the result of air pollution-related conditions. In 2016 about 3 million deaths a year were linked to exposure to outdoor air pollution. In the last few years many epidemiological studies have shown associations between air pollutant concentrations and human health. Apart from people, even monuments and artworks can be damaged by pollution, especially in city centres. Furthermore, urbanization modified microclimate conditions of the cities, and, together with traffic and domestic heating, led to a discomfort of living conditions. For these reasons, there is the necessity to improve the research on the impact of pollutant and microclimate conditions inside urban areas. In this work different kinds of pollutants in Rome from 2006 to 2015 were analysed, and different techniques of post elaboration were used. In particular, the attention was focused on statistic and cross statistic techniques in time and space. The results led to describe Rome as spatially and temporally independence regarding pollutant. Even weather changes were studied in relation with pollution. In particular, cross-correlation analysis were done with air temperature, solar radiation, wind direction and velocity, highlighting a strong coupling for the most of cases except for particular matter.

Battista, G., & de Lieto Vollaro, R. (2017). Correlation between air pollution and weather data in urban areas: Assessment of the city of Rome (Italy) as spatially and temporally independent regarding pollutants. ATMOSPHERIC ENVIRONMENT, 165, 240-247 [10.1016/j.atmosenv.2017.06.050].

Correlation between air pollution and weather data in urban areas: Assessment of the city of Rome (Italy) as spatially and temporally independent regarding pollutants

de Lieto Vollaro R.
2017

Abstract

Air pollution represents the biggest environmental risk for health. It is so widespread and it represents one of the main problems of the worldwide, especially because it is emitted by so many different types of sources. The pollutants can originate directly by exhausted or they can be formed because of the reaction with the atmosphere. The first one includes particulate matter and gaseous pollutants such as sulfur oxides, nitrogen oxides, and carbon oxides. The second one includes the ozone formed from nitrogen oxides and hydrocarbons, and particulate sulfate and nitrate aerosols created in the atmosphere from sulfur and nitrogen oxide gases. During the entire life course, people are exposed to the pollutants and suffer from different consequences depending on the age. The first nine month of life are generally recognized as more critical than latter time periods. The mortality associated to air pollutant exposure is main related to the concentrations of NOx, ozone, carbon monoxide, sulfur dioxides and particular matter. More than 92% of the world's population lives in places where air quality levels exceed the standards. In 2012, one out of every nine deaths was the result of air pollution-related conditions. In 2016 about 3 million deaths a year were linked to exposure to outdoor air pollution. In the last few years many epidemiological studies have shown associations between air pollutant concentrations and human health. Apart from people, even monuments and artworks can be damaged by pollution, especially in city centres. Furthermore, urbanization modified microclimate conditions of the cities, and, together with traffic and domestic heating, led to a discomfort of living conditions. For these reasons, there is the necessity to improve the research on the impact of pollutant and microclimate conditions inside urban areas. In this work different kinds of pollutants in Rome from 2006 to 2015 were analysed, and different techniques of post elaboration were used. In particular, the attention was focused on statistic and cross statistic techniques in time and space. The results led to describe Rome as spatially and temporally independence regarding pollutant. Even weather changes were studied in relation with pollution. In particular, cross-correlation analysis were done with air temperature, solar radiation, wind direction and velocity, highlighting a strong coupling for the most of cases except for particular matter.
Battista, G., & de Lieto Vollaro, R. (2017). Correlation between air pollution and weather data in urban areas: Assessment of the city of Rome (Italy) as spatially and temporally independent regarding pollutants. ATMOSPHERIC ENVIRONMENT, 165, 240-247 [10.1016/j.atmosenv.2017.06.050].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11590/363681
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 30
social impact