In this article, the problem of synthetic aperture radar (SAR) images coregistration is considered. In particular, a novel algorithm aimed at achieving a fine subpixel coregistration accuracy is developed. The procedure is based on the parabolic interpolation of the 2-D cross correlation computed between the two SAR images to be aligned. More precisely, from the 2-D cross correlation, a neighborhood of its peak value is extracted and the interpolation of both the 2-D paraboloid and the two alternative 1-D parabolas is computed to provide the finer misregistration estimation with subpixel accuracy. The main advantage of the proposed framework is that the overall computational burden is only due to the 2-D cross correlation estimation since the parabolic interpolation is calculated with a closed-form expression. The results obtained on real recorded unmanned aerial vehicle (UAV) SAR data highlight the effectiveness of the proposed approach as well as its capabilities to provide some benefits with respect to other available strategies.
Pallotta, L., Giunta, G., Clemente, C. (2020). Subpixel SAR Image Registration through Parabolic Interpolation of the 2-D Cross Correlation. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 58(6), 4132-4144 [10.1109/TGRS.2019.2961245].
Subpixel SAR Image Registration through Parabolic Interpolation of the 2-D Cross Correlation
Pallotta L.
;Giunta G.;
2020-01-01
Abstract
In this article, the problem of synthetic aperture radar (SAR) images coregistration is considered. In particular, a novel algorithm aimed at achieving a fine subpixel coregistration accuracy is developed. The procedure is based on the parabolic interpolation of the 2-D cross correlation computed between the two SAR images to be aligned. More precisely, from the 2-D cross correlation, a neighborhood of its peak value is extracted and the interpolation of both the 2-D paraboloid and the two alternative 1-D parabolas is computed to provide the finer misregistration estimation with subpixel accuracy. The main advantage of the proposed framework is that the overall computational burden is only due to the 2-D cross correlation estimation since the parabolic interpolation is calculated with a closed-form expression. The results obtained on real recorded unmanned aerial vehicle (UAV) SAR data highlight the effectiveness of the proposed approach as well as its capabilities to provide some benefits with respect to other available strategies.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.