Given a smooth hypersurface $X\subset \mathbb{P}^{n+1}$ of degree $d\geqslant 2$, we study the cones $V^h_p\subset \mathbb{P}^{n+1}$ swept out by lines having contact order $h\geqslant 2$ at a point $p\in X$. In particular, we prove that if $X$ is general, then for any $p\in X$ and $2 \leqslant h\leqslant min{ n+1,d}$, the cone $V^h_p$ has dimension exactly $n+2-h$. Moreover, when $X$ is a very general hypersurface of degree $d\geqslant 2n+2$, we describe the relation between the cones $V^h_p$ and the degree of irrationality of $k$--dimensional subvarieties of $X$ passing through a general point of $X$. As an application, we give some bounds on the least degree of irrationality of $k$--dimensional subvarieties of $X$ passing through a general point of $X$, and we prove that the connecting gonality of $X$ satisfies $d-\frac{\sqrt{16n+25}-3}{2} \leqslant conn.gon(X)\leqslant d-\frac{\sqrt{8n+1}+1}{2}$.

Bastianelli, F., Ciliberto, C., Flamini, F., Supino, P. (2022). Cones of lines having high contact with general hypersurfaces and applications. MATHEMATISCHE NACHRICHTEN, 1-15 [10.1002/mana.202000486].

Cones of lines having high contact with general hypersurfaces and applications

Paola Supino
2022-01-01

Abstract

Given a smooth hypersurface $X\subset \mathbb{P}^{n+1}$ of degree $d\geqslant 2$, we study the cones $V^h_p\subset \mathbb{P}^{n+1}$ swept out by lines having contact order $h\geqslant 2$ at a point $p\in X$. In particular, we prove that if $X$ is general, then for any $p\in X$ and $2 \leqslant h\leqslant min{ n+1,d}$, the cone $V^h_p$ has dimension exactly $n+2-h$. Moreover, when $X$ is a very general hypersurface of degree $d\geqslant 2n+2$, we describe the relation between the cones $V^h_p$ and the degree of irrationality of $k$--dimensional subvarieties of $X$ passing through a general point of $X$. As an application, we give some bounds on the least degree of irrationality of $k$--dimensional subvarieties of $X$ passing through a general point of $X$, and we prove that the connecting gonality of $X$ satisfies $d-\frac{\sqrt{16n+25}-3}{2} \leqslant conn.gon(X)\leqslant d-\frac{\sqrt{8n+1}+1}{2}$.
Bastianelli, F., Ciliberto, C., Flamini, F., Supino, P. (2022). Cones of lines having high contact with general hypersurfaces and applications. MATHEMATISCHE NACHRICHTEN, 1-15 [10.1002/mana.202000486].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/373052
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact