In this invited Commentary, as requested, I will walk the reader through my research path starting from my first works on proteins and their hydration water dynamics to my most recent activity on the use of ionic liquids (ILs) as molecular handles to control and manipulate cell membrane mechano-elasticity and cell migration. In doing so I will comment on my research activity on polymers, proteins, natural bioprotectants, phospholipid bilayers, amyloids and cells, which I have carried out by combining several different experimental and computational approaches including neutron scattering, atomic force microscopy, classical molecular dynamics and ab initio calculations, used in tandem with several biological assays and a palette of complementary techniques ranging from calorimetry to static and dynamic light scattering. In parallel to this biophysical/chemical-physical core activity, a smaller portion of my interest and effort has been—I may say always—dedicated to the development of a new neutron scattering method/spectroscopy for dynamics based on “elastic” scattering. I will comment on this instrumental side of my research as well and show its relationship with the biophysical core of my activity. The overall picture that emerges is, from my personal prospective, of a coherent 13-year research path based on curiosity and a problem-solving approach, in which the fundamental importance of inter- and trans-disciplinary approaches and collaborations is emerging on the way, forecasting a prosper and intriguing future for physics in biology and in nanomedicine and bionanotechnology applications.

Benedetto, A. (2020). From protein and its hydration water dynamics to controlling mechano-elasticity of cellular lipid membranes and cell migration via ionic liquids. BIOPHYSICAL REVIEWS, 12(5), 1111-1115 [10.1007/s12551-020-00755-9].

From protein and its hydration water dynamics to controlling mechano-elasticity of cellular lipid membranes and cell migration via ionic liquids

Benedetto A.
2020-01-01

Abstract

In this invited Commentary, as requested, I will walk the reader through my research path starting from my first works on proteins and their hydration water dynamics to my most recent activity on the use of ionic liquids (ILs) as molecular handles to control and manipulate cell membrane mechano-elasticity and cell migration. In doing so I will comment on my research activity on polymers, proteins, natural bioprotectants, phospholipid bilayers, amyloids and cells, which I have carried out by combining several different experimental and computational approaches including neutron scattering, atomic force microscopy, classical molecular dynamics and ab initio calculations, used in tandem with several biological assays and a palette of complementary techniques ranging from calorimetry to static and dynamic light scattering. In parallel to this biophysical/chemical-physical core activity, a smaller portion of my interest and effort has been—I may say always—dedicated to the development of a new neutron scattering method/spectroscopy for dynamics based on “elastic” scattering. I will comment on this instrumental side of my research as well and show its relationship with the biophysical core of my activity. The overall picture that emerges is, from my personal prospective, of a coherent 13-year research path based on curiosity and a problem-solving approach, in which the fundamental importance of inter- and trans-disciplinary approaches and collaborations is emerging on the way, forecasting a prosper and intriguing future for physics in biology and in nanomedicine and bionanotechnology applications.
2020
Benedetto, A. (2020). From protein and its hydration water dynamics to controlling mechano-elasticity of cellular lipid membranes and cell migration via ionic liquids. BIOPHYSICAL REVIEWS, 12(5), 1111-1115 [10.1007/s12551-020-00755-9].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/373951
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact