The majority of Italian schools (70%) were built in the absence of any legislation related to energy efficiency, and therefore have very low energy performance due to aging or poor quality of construction. An energy retrofit of this building stock is needed to meet the current European goals on greenhouse gas emission reduction. The retrofit is also needed in order to guarantee adequate comfort levels in indoor spaces and good conditions for learning and educational activities, that are often not reached in poor quality constructions. This work presents the results of an interdisciplinary study related to the energy requalification of a school located in Ostia, near Rome in Italy, built in the 1960s with a steel structure and Eternit infill. The scope of the analysis is to verify the economic and environmental effectiveness of four proposed retrofit interventions concerning the replacement of fixtures and the installation of an insulating coat. The current thermal transmittance of the walls was evaluated through thermofluximetric measurements conducted in situ; dynamic simulations were performed to determine the current energy performance and the energy performances following the four proposed retrofit scenarios. Energy and carbon payback times were evaluated (by means of the life cycle analysis (LCA) approach) and the economic value was determined for each of the four proposed retrofits, using a probabilistic approach. The results show that the replacement of windows is the most convenient intervention from all points of view. The study provides evidence that an assessment of schools’ energy retrofits should include both economic and life cycle aspects.
Asdrubali, F., Venanzi, D., Evangelisti, L., Guattari, M.C., Grazieschi, G., Matteucci, P., et al. (2021). An Evaluation of the Environmental Payback Times and Economic Convenience in an Energy Requalification of a School. BUILDINGS, 11(1) [10.3390/buildings11010012].
An Evaluation of the Environmental Payback Times and Economic Convenience in an Energy Requalification of a School.
Francesco Asdrubali
;Daniela Venanzi;Luca Evangelisti;Claudia Guattari;Gianluca Grazieschi;Paolo Matteucci;Marta Roncone
2021-01-01
Abstract
The majority of Italian schools (70%) were built in the absence of any legislation related to energy efficiency, and therefore have very low energy performance due to aging or poor quality of construction. An energy retrofit of this building stock is needed to meet the current European goals on greenhouse gas emission reduction. The retrofit is also needed in order to guarantee adequate comfort levels in indoor spaces and good conditions for learning and educational activities, that are often not reached in poor quality constructions. This work presents the results of an interdisciplinary study related to the energy requalification of a school located in Ostia, near Rome in Italy, built in the 1960s with a steel structure and Eternit infill. The scope of the analysis is to verify the economic and environmental effectiveness of four proposed retrofit interventions concerning the replacement of fixtures and the installation of an insulating coat. The current thermal transmittance of the walls was evaluated through thermofluximetric measurements conducted in situ; dynamic simulations were performed to determine the current energy performance and the energy performances following the four proposed retrofit scenarios. Energy and carbon payback times were evaluated (by means of the life cycle analysis (LCA) approach) and the economic value was determined for each of the four proposed retrofits, using a probabilistic approach. The results show that the replacement of windows is the most convenient intervention from all points of view. The study provides evidence that an assessment of schools’ energy retrofits should include both economic and life cycle aspects.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.