In this paper we study the existence and linear stability of almost periodic solutions for a NLS equation on the circle with external parameters. Starting from the seminal result of Bourgain in [15] on the quintic NLS, we propose a novel approach allowing to prove in a unified framework the persistence of finite and infinite dimensional invariant tori, which are the support of the desired solutions. The persistence result is given through a rather abstract “counter-term theorem” à la Herman, directly in the original elliptic variables without passing to action-angle ones. Our framework allows us to find “many more” almost periodic solutions with respect to the existing literature and consider also non-translation invariant PDEs.

Biasco, L., Massetti, J.E., Procesi, M. (2021). Almost periodic invariant tori for the NLS on the circle. ANNALES DE L INSTITUT HENRI POINCARÉ. ANALYSE NON LINÉAIRE [10.1016/j.anihpc.2020.09.003].

Almost periodic invariant tori for the NLS on the circle

Biasco L.;Massetti J. E.
;
Procesi M.
2021-01-01

Abstract

In this paper we study the existence and linear stability of almost periodic solutions for a NLS equation on the circle with external parameters. Starting from the seminal result of Bourgain in [15] on the quintic NLS, we propose a novel approach allowing to prove in a unified framework the persistence of finite and infinite dimensional invariant tori, which are the support of the desired solutions. The persistence result is given through a rather abstract “counter-term theorem” à la Herman, directly in the original elliptic variables without passing to action-angle ones. Our framework allows us to find “many more” almost periodic solutions with respect to the existing literature and consider also non-translation invariant PDEs.
2021
Biasco, L., Massetti, J.E., Procesi, M. (2021). Almost periodic invariant tori for the NLS on the circle. ANNALES DE L INSTITUT HENRI POINCARÉ. ANALYSE NON LINÉAIRE [10.1016/j.anihpc.2020.09.003].
File in questo prodotto:
File Dimensione Formato  
1903.07576.pdf

solo utenti autorizzati

Tipologia: Documento in Pre-print
Licenza: Non specificato
Dimensione 824.68 kB
Formato Adobe PDF
824.68 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/377121
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 13
social impact