This work provides an experimental investigation into the interaction between a jet flow and a semi-finite plate parallel to the jet. Wall pressure fluctuations have been measured in a high compressible subsonic regime and for different distances between the jet and the plate trailing edge. The experiment has been carried out in the ISVR anechoic Doak Laboratory at the University of Southampton, using wall pressure transducers flush mounted on the plate surface. Signals were acquired in the stream-wise direction along the jet centreline and in the span-wise direction in a region close to the trailing edge. The radial position of the flat plate was fixed very close to the jet axis to simulate a realistic jet–wing configuration. The plate was moved axially in order to investigate four different jet-trailing edge distances and to include measurements upstream of the nozzle exhaust. The acquired database was analyzed in both the frequency and the time domains providing an extensive statistical characterization in terms of spectral uni– and multi–variate quantities as well as high order statistical moments. A wavelet analysis was performed as well to investigate the time evolution of the wall pressure events.
Meloni, S., Lawrence, J.L.T., Proenca, A.R., Self, R.H., Camussi, R. (2020). Wall pressure fluctuations induced by a single stream jet over a semi-finite plate. INTERNATIONAL JOURNAL OF AEROACOUSTICS, 19(3-5), 240-253 [10.1177/1475472X20930650].
Wall pressure fluctuations induced by a single stream jet over a semi-finite plate
Camussi R.
2020-01-01
Abstract
This work provides an experimental investigation into the interaction between a jet flow and a semi-finite plate parallel to the jet. Wall pressure fluctuations have been measured in a high compressible subsonic regime and for different distances between the jet and the plate trailing edge. The experiment has been carried out in the ISVR anechoic Doak Laboratory at the University of Southampton, using wall pressure transducers flush mounted on the plate surface. Signals were acquired in the stream-wise direction along the jet centreline and in the span-wise direction in a region close to the trailing edge. The radial position of the flat plate was fixed very close to the jet axis to simulate a realistic jet–wing configuration. The plate was moved axially in order to investigate four different jet-trailing edge distances and to include measurements upstream of the nozzle exhaust. The acquired database was analyzed in both the frequency and the time domains providing an extensive statistical characterization in terms of spectral uni– and multi–variate quantities as well as high order statistical moments. A wavelet analysis was performed as well to investigate the time evolution of the wall pressure events.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.