Aims. We report estimates of the X-ray coronal size of active galactic nuclei in the lamppost geometry. In this commonly adopted scenario, the corona is assumed for simplicity to be a point-like X-ray source located on the axis of the accretion disc. However, the corona must intercept a number of optical/UV seed photons from the disc consistent with the observed X-ray flux, which constrains its size. Methods. We employ a relativistic ray-tracing code, originally developed by Dovčiak and Done, that calculates the size of a Comptonizing lamppost corona illuminated by a standard thin disc. We assume that the disc extends down to the innermost stable circular orbit of a non-spinning or a maximally spinning black hole. We apply this method to a sample of 20 Seyfert 1 galaxies using simultaneous optical/UV and X-ray archival data from XMM-Newton. Results. At least for the sources accreting below the Eddington limit, we find that a Comptonizing lamppost corona can generally exist, but with constraints on its size and height above the event horizon of the black hole depending on the spin. For a maximally spinning black hole, a solution can almost always be found at any height, while for a non-spinning black hole the height must generally be higher than 5 gravitational radii. This is because, for a given luminosity, a higher spin implies more seed photons illuminating the corona, which is due to a larger and hotter inner disc area. The maximal spin solution is favoured, as it predicts an X-ray photon index in better agreement with the observations.

Ursini, F., Dovciak, M., Zhang, W., Matt, G., Petrucci, P.-., Done, C. (2020). Estimating the size of X-ray lamppost coronae in active galactic nuclei. ASTRONOMY & ASTROPHYSICS, 644, A132 [10.1051/0004-6361/202039158].

Estimating the size of X-ray lamppost coronae in active galactic nuclei

Ursini F.
;
Matt G.;
2020-01-01

Abstract

Aims. We report estimates of the X-ray coronal size of active galactic nuclei in the lamppost geometry. In this commonly adopted scenario, the corona is assumed for simplicity to be a point-like X-ray source located on the axis of the accretion disc. However, the corona must intercept a number of optical/UV seed photons from the disc consistent with the observed X-ray flux, which constrains its size. Methods. We employ a relativistic ray-tracing code, originally developed by Dovčiak and Done, that calculates the size of a Comptonizing lamppost corona illuminated by a standard thin disc. We assume that the disc extends down to the innermost stable circular orbit of a non-spinning or a maximally spinning black hole. We apply this method to a sample of 20 Seyfert 1 galaxies using simultaneous optical/UV and X-ray archival data from XMM-Newton. Results. At least for the sources accreting below the Eddington limit, we find that a Comptonizing lamppost corona can generally exist, but with constraints on its size and height above the event horizon of the black hole depending on the spin. For a maximally spinning black hole, a solution can almost always be found at any height, while for a non-spinning black hole the height must generally be higher than 5 gravitational radii. This is because, for a given luminosity, a higher spin implies more seed photons illuminating the corona, which is due to a larger and hotter inner disc area. The maximal spin solution is favoured, as it predicts an X-ray photon index in better agreement with the observations.
2020
Ursini, F., Dovciak, M., Zhang, W., Matt, G., Petrucci, P.-., Done, C. (2020). Estimating the size of X-ray lamppost coronae in active galactic nuclei. ASTRONOMY & ASTROPHYSICS, 644, A132 [10.1051/0004-6361/202039158].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/381677
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 13
social impact