Dysfunctional mitochondria have severe consequences on cell functions including Reactive Oxygen Specie (ROS) generation, alteration of mitochondrial signaling, Ca2+ buffering, and activation of apoptotic pathway. These dysfunctions are closely linked with degenerative diseases including neurodegeneration. The discovery of neuroglobin (NGB) as an endogenous neuroprotective protein, which effects seem to depend on its mitochondrial localization, could drive new therapeutic strategies against aged-related neurodegenerative diseases. Indeed, high levels of NGB are active against several brain injuries, including neurodegeneration, hypoxia, ischemia, toxicity, and nutrient deprivation opening a new scenario in the comprehension of the relationship between neural pathologies and mitochondrial homeostasis. In this review, we provide the current understanding of the role of mitochondria in neurodegeneration and discuss structural and functional connection between NGB and mitochondria with the purpose of defining a novel mitochondrial-based neuroprotective mechanism(s).

Fiocchetti, M., Cracco, P., Montalesi, E., SOLAR FERNANDEZ, V., Stuart, J.A., Marino, M. (2021). Neuroglobin and mitochondria: The impact on neurodegenerative diseases. ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 701, 108823 [10.1016/j.abb.2021.108823].

Neuroglobin and mitochondria: The impact on neurodegenerative diseases

marco fiocchetti
Methodology
;
Patrizio Cracco
Membro del Collaboration Group
;
Emiliano Montalesi
Membro del Collaboration Group
;
Virginia Solar Fernandez
Membro del Collaboration Group
;
Maria Marino
Writing – Original Draft Preparation
2021-01-01

Abstract

Dysfunctional mitochondria have severe consequences on cell functions including Reactive Oxygen Specie (ROS) generation, alteration of mitochondrial signaling, Ca2+ buffering, and activation of apoptotic pathway. These dysfunctions are closely linked with degenerative diseases including neurodegeneration. The discovery of neuroglobin (NGB) as an endogenous neuroprotective protein, which effects seem to depend on its mitochondrial localization, could drive new therapeutic strategies against aged-related neurodegenerative diseases. Indeed, high levels of NGB are active against several brain injuries, including neurodegeneration, hypoxia, ischemia, toxicity, and nutrient deprivation opening a new scenario in the comprehension of the relationship between neural pathologies and mitochondrial homeostasis. In this review, we provide the current understanding of the role of mitochondria in neurodegeneration and discuss structural and functional connection between NGB and mitochondria with the purpose of defining a novel mitochondrial-based neuroprotective mechanism(s).
2021
Fiocchetti, M., Cracco, P., Montalesi, E., SOLAR FERNANDEZ, V., Stuart, J.A., Marino, M. (2021). Neuroglobin and mitochondria: The impact on neurodegenerative diseases. ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 701, 108823 [10.1016/j.abb.2021.108823].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/385974
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 19
social impact