We study geometrical properties of an Ulrich vector bundle $E$ of rank $r$ on a smooth $n$-dimensional variety $X subseteq P^N$. We characterize ampleness of $E$ and of $det E$ in terms of the restriction to lines contained in $X$. We prove that all fibers of the map $Phi_{E}:X o {mathbb G}(r-1, P H^0(E))$ are linear spaces, as well as the projection on $X$ of all fibers of the map $arphi_{E} : P(E) o P H^0(E)$. Then we get a number of consequences: a characterization of bigness of $E$ and of $det E$ in terms of the maps $Phi_{E}$ and $arphi_{E}$; when $detE$ is big and $E$ is not big there are infinitely many linear spaces in $X$ through any point of $X$; when $det E$ is not big, the fibers of $Phi_{E}$ and $arphi_{E}$ have the same dimension; a classification of Ulrich vector bundles whose determinant has numerical dimension at most $rac{n}{2}$; a classification of Ulrich vector bundles with $det E$ of numerical dimension at most $k$ on a linear $P^k$-bundle.

Lopez, A., J. C., S. (In corso di stampa). A geometrical view of Ulrich vector bundles. INTERNATIONAL MATHEMATICS RESEARCH NOTICES.

A geometrical view of Ulrich vector bundles

Lopez Angelo;
In corso di stampa

Abstract

We study geometrical properties of an Ulrich vector bundle $E$ of rank $r$ on a smooth $n$-dimensional variety $X subseteq P^N$. We characterize ampleness of $E$ and of $det E$ in terms of the restriction to lines contained in $X$. We prove that all fibers of the map $Phi_{E}:X o {mathbb G}(r-1, P H^0(E))$ are linear spaces, as well as the projection on $X$ of all fibers of the map $arphi_{E} : P(E) o P H^0(E)$. Then we get a number of consequences: a characterization of bigness of $E$ and of $det E$ in terms of the maps $Phi_{E}$ and $arphi_{E}$; when $detE$ is big and $E$ is not big there are infinitely many linear spaces in $X$ through any point of $X$; when $det E$ is not big, the fibers of $Phi_{E}$ and $arphi_{E}$ have the same dimension; a classification of Ulrich vector bundles whose determinant has numerical dimension at most $rac{n}{2}$; a classification of Ulrich vector bundles with $det E$ of numerical dimension at most $k$ on a linear $P^k$-bundle.
Lopez, A., J. C., S. (In corso di stampa). A geometrical view of Ulrich vector bundles. INTERNATIONAL MATHEMATICS RESEARCH NOTICES.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/387750
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact