In this paper, a new time-space network model is proposed for addressing the time-dependent rural postman problem (TDRPP) of a single vehicle. The proposed model follows the idea of arc-path alternation to form a feasible and complete route. Based on the proposed model, the time dependency of the TDRPP is better described to capture its dynamic process, compared to the existing methods using a piecewise constant function with limited intervals. Furthermore, the property of first-in-first-out (FIFO) can be satisfied with the time spent on each arc. We investigate the FIFO property for the considered time-dependent network and key optimality property for the TDRPP. Based on this property, a dedicated genetic algorithm (GA) is proposed to efficiently solve the considered TDRPP that suffers from computational intractability for large-scale cases. Comprehensive simulation experiments are conducted for various time-dependent networks to show the effectiveness of the proposed GA.
Xin, J., Yu, B., D'Ariano, A., Wang, H., Wang, M. (2021). Time-dependent rural postman problem: time-space network formulation and genetic algorithm. OPERATIONAL RESEARCH [10.1007/s12351-021-00639-0].
Time-dependent rural postman problem: time-space network formulation and genetic algorithm
D'Ariano A.;
2021-01-01
Abstract
In this paper, a new time-space network model is proposed for addressing the time-dependent rural postman problem (TDRPP) of a single vehicle. The proposed model follows the idea of arc-path alternation to form a feasible and complete route. Based on the proposed model, the time dependency of the TDRPP is better described to capture its dynamic process, compared to the existing methods using a piecewise constant function with limited intervals. Furthermore, the property of first-in-first-out (FIFO) can be satisfied with the time spent on each arc. We investigate the FIFO property for the considered time-dependent network and key optimality property for the TDRPP. Based on this property, a dedicated genetic algorithm (GA) is proposed to efficiently solve the considered TDRPP that suffers from computational intractability for large-scale cases. Comprehensive simulation experiments are conducted for various time-dependent networks to show the effectiveness of the proposed GA.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.