Controlling the spin dynamics and spin lifetimes is one of the main challenges in spintronics. To this end, the study of the spin diffusion in two-dimensional electron gases (2DEGs) shows that when the Rashba and Dresselhaus spin-orbit couplings (SOC) are balanced, a persistent spin helix regime arises. There, a striped spin pattern shows a long lifetime, limited only by the cubic Dresselhaus SOC, and its dynamics can be controlled by in-plane drift fields. Here, we derive a spin-diffusion equation for nondegenerate two-subband 2DEGs. We show that the intersubband scattering rate, which is defined by the overlap of the subband densities, enters as a new nob to control the spin dynamics, and can be controlled by electric fields, being maximum for symmetric quantum wells. We find that for large intersubband couplings the dynamics follows an effective diffusion matrix given by approximately half of the subband-averaged matrices. This extra 12 factor arises from Matthiessen's rule summing over the intrasubband and intersubband scattering rates, and leads to a reduced diffusion constant and larger spin lifetimes. We illustrate our findings with numerical solutions of the diffusion equation with parameters extracted from realistic Schrödinger-Poisson calculations.

De Assis, I.R., Raimondi, R., & Ferreira, G.J. (2021). Spin drift-diffusion for two-subband quantum wells. PHYSICAL REVIEW. B, 103(16) [10.1103/PhysRevB.103.165304].

Spin drift-diffusion for two-subband quantum wells

Raimondi R.;
2021

Abstract

Controlling the spin dynamics and spin lifetimes is one of the main challenges in spintronics. To this end, the study of the spin diffusion in two-dimensional electron gases (2DEGs) shows that when the Rashba and Dresselhaus spin-orbit couplings (SOC) are balanced, a persistent spin helix regime arises. There, a striped spin pattern shows a long lifetime, limited only by the cubic Dresselhaus SOC, and its dynamics can be controlled by in-plane drift fields. Here, we derive a spin-diffusion equation for nondegenerate two-subband 2DEGs. We show that the intersubband scattering rate, which is defined by the overlap of the subband densities, enters as a new nob to control the spin dynamics, and can be controlled by electric fields, being maximum for symmetric quantum wells. We find that for large intersubband couplings the dynamics follows an effective diffusion matrix given by approximately half of the subband-averaged matrices. This extra 12 factor arises from Matthiessen's rule summing over the intrasubband and intersubband scattering rates, and leads to a reduced diffusion constant and larger spin lifetimes. We illustrate our findings with numerical solutions of the diffusion equation with parameters extracted from realistic Schrödinger-Poisson calculations.
De Assis, I.R., Raimondi, R., & Ferreira, G.J. (2021). Spin drift-diffusion for two-subband quantum wells. PHYSICAL REVIEW. B, 103(16) [10.1103/PhysRevB.103.165304].
File in questo prodotto:
File Dimensione Formato  
deAssis_2102_04831.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 1.27 MB
Formato Adobe PDF
1.27 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/391971
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact