Nineteen classical superintegrable systems in two-dimensional non-Euclidean spaces are shown to possess hidden symmetries leading to their linearization. They are the two Perlick systems [Ballesteros et al., Classical Quantum Gravity 25, 165005 (2008)], the Taub-NUT system [Ballesteros et al., SIGMA 7, 048 (2011)], and all the 17 superintegrable systems for the four types of Darboux spaces as determined by Kalnins et al. [J. Math. Phys. 44, 5811-5848 (2003)].

Gubbiotti, G., Nucci, M.C. (2021). Superintegrable systems in non-Euclidean plane: Hidden symmetries leading to linearity. JOURNAL OF MATHEMATICAL PHYSICS, 62(7), 073503 [10.1063/5.0041130].

Superintegrable systems in non-Euclidean plane: Hidden symmetries leading to linearity

Gubbiotti G.;
2021-01-01

Abstract

Nineteen classical superintegrable systems in two-dimensional non-Euclidean spaces are shown to possess hidden symmetries leading to their linearization. They are the two Perlick systems [Ballesteros et al., Classical Quantum Gravity 25, 165005 (2008)], the Taub-NUT system [Ballesteros et al., SIGMA 7, 048 (2011)], and all the 17 superintegrable systems for the four types of Darboux spaces as determined by Kalnins et al. [J. Math. Phys. 44, 5811-5848 (2003)].
2021
Gubbiotti, G., Nucci, M.C. (2021). Superintegrable systems in non-Euclidean plane: Hidden symmetries leading to linearity. JOURNAL OF MATHEMATICAL PHYSICS, 62(7), 073503 [10.1063/5.0041130].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/392051
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact