Space-time adaptive processing (STAP) is a well-known and effective method to detect targets, obscured by interference, from airborne radars that works by coherently combining signals from a phased antenna array (spatial domain) with multiple radar pulses (temporal domain). As widely demonstrated, optimum STAP, in the sense of maximizing the output signal to interference plus noise ratio (SINR), is a coherent, linear, transversal filter (i.e., tapped delay line), that can be synthesized by a complex-valued weight vector. This paper extends previous work that focused on adaptive spatial-only nulling, derives the optimum phase-only STAP; namely, the optimal weight vector that maximizes the SINR subject to the constraint it belongs to the N-torus of phase-only complex vectors, where N is the number of spatio-temporal degrees of freedom. Because this problem does not admit a closed-form solution, it is solved numerically using the phase-only conjugate gradient method (CGM). The effectiveness of phase-only STAP is demonstrated using both SINR values and receiving beampattern shape, comparing it with the optimum fully-adapted STAP and the nonadapted beam former responses as well as other possible counterparts. Additionally, several analyses of practical utility also demonstrate the benefits provided by phase-only STAP.

Pallotta, L., Farina, A., Smith, S.T., & Giunta, G. (2021). Phase-Only Space-Time Adaptive Processing. IEEE ACCESS, 9, 147250-147263 [10.1109/ACCESS.2021.3122837].

Phase-Only Space-Time Adaptive Processing

Pallotta L.
;
Giunta G.
2021

Abstract

Space-time adaptive processing (STAP) is a well-known and effective method to detect targets, obscured by interference, from airborne radars that works by coherently combining signals from a phased antenna array (spatial domain) with multiple radar pulses (temporal domain). As widely demonstrated, optimum STAP, in the sense of maximizing the output signal to interference plus noise ratio (SINR), is a coherent, linear, transversal filter (i.e., tapped delay line), that can be synthesized by a complex-valued weight vector. This paper extends previous work that focused on adaptive spatial-only nulling, derives the optimum phase-only STAP; namely, the optimal weight vector that maximizes the SINR subject to the constraint it belongs to the N-torus of phase-only complex vectors, where N is the number of spatio-temporal degrees of freedom. Because this problem does not admit a closed-form solution, it is solved numerically using the phase-only conjugate gradient method (CGM). The effectiveness of phase-only STAP is demonstrated using both SINR values and receiving beampattern shape, comparing it with the optimum fully-adapted STAP and the nonadapted beam former responses as well as other possible counterparts. Additionally, several analyses of practical utility also demonstrate the benefits provided by phase-only STAP.
Pallotta, L., Farina, A., Smith, S.T., & Giunta, G. (2021). Phase-Only Space-Time Adaptive Processing. IEEE ACCESS, 9, 147250-147263 [10.1109/ACCESS.2021.3122837].
File in questo prodotto:
File Dimensione Formato  
64_Pallotta_IEEEAccess_2021_Phase-Only_Space-Time_Adaptive_Processing.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Versione Editoriale (PDF)
Licenza: DRM non definito
Dimensione 5.83 MB
Formato Adobe PDF
5.83 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11590/394419
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
social impact