We establish an upper bound on the spectral gap for compact quantum graphs which depends only on the diameter and total number of vertices. This bound is asymptotically sharp for pumpkin chains with number of edges tending to infinity.

Borthwick, D., Corsi, L., & Jones, K. (2021). Sharp diameter bound on the spectral gap for quantum graphs. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 149(7), 2879-2890 [10.1090/proc/15090].

Sharp diameter bound on the spectral gap for quantum graphs

Corsi L.;
2021

Abstract

We establish an upper bound on the spectral gap for compact quantum graphs which depends only on the diameter and total number of vertices. This bound is asymptotically sharp for pumpkin chains with number of edges tending to infinity.
Borthwick, D., Corsi, L., & Jones, K. (2021). Sharp diameter bound on the spectral gap for quantum graphs. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 149(7), 2879-2890 [10.1090/proc/15090].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11590/396828
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact