Linear Feedback Shift Registers (LFSR) are tools commonly used in cryptography in many contexts, for example as pseudo-random numbers generators. In this paper we characterize LFSR with certain symmetry properties. Related to this question we also classify polynomials f satisfying the property that if α is a root of f then f (α deg f) = 0. The classification heavily depends on the choice of the fields of coefficients of the polynomial; we consider the cases (Figure presented.) and K = ℚ.

Capuano, L., & Di Scala, A.J. (2021). A note on cyclotomic polynomials and Linear Feedback Shift Registers. QUAESTIONES MATHEMATICAE, 1-13 [10.2989/16073606.2021.1967504].

A note on cyclotomic polynomials and Linear Feedback Shift Registers

Capuano L.;
2021

Abstract

Linear Feedback Shift Registers (LFSR) are tools commonly used in cryptography in many contexts, for example as pseudo-random numbers generators. In this paper we characterize LFSR with certain symmetry properties. Related to this question we also classify polynomials f satisfying the property that if α is a root of f then f (α deg f) = 0. The classification heavily depends on the choice of the fields of coefficients of the polynomial; we consider the cases (Figure presented.) and K = ℚ.
Capuano, L., & Di Scala, A.J. (2021). A note on cyclotomic polynomials and Linear Feedback Shift Registers. QUAESTIONES MATHEMATICAE, 1-13 [10.2989/16073606.2021.1967504].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11590/396883
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact