We prove a local in time well-posedness result for quasi-linear Hamiltonian Schrödinger equations on Td for any d≥1. For any initial condition in the Sobolev space Hs, with s large, we prove the existence and uniqueness of classical solutions of the Cauchy problem associated to the equation. The lifespan of such a solution depends only on the size of the initial datum. Moreover we prove the continuity of the solution map.

Feola, R., & Iandoli, F. (2022). Local well-posedness for the quasi-linear Hamiltonian Schrödinger equation on tori. JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES, 157, 243-281 [10.1016/j.matpur.2021.11.009].

Local well-posedness for the quasi-linear Hamiltonian Schrödinger equation on tori

Feola R.;
2022

Abstract

We prove a local in time well-posedness result for quasi-linear Hamiltonian Schrödinger equations on Td for any d≥1. For any initial condition in the Sobolev space Hs, with s large, we prove the existence and uniqueness of classical solutions of the Cauchy problem associated to the equation. The lifespan of such a solution depends only on the size of the initial datum. Moreover we prove the continuity of the solution map.
Feola, R., & Iandoli, F. (2022). Local well-posedness for the quasi-linear Hamiltonian Schrödinger equation on tori. JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES, 157, 243-281 [10.1016/j.matpur.2021.11.009].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11590/396992
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 0
social impact