We prove local in time well-posedness for a large class of quasilinear Hamiltonian, or parity preserving, Schrödinger equations on the circle. After a paralinearization of the equation, we perform several paradifferential changes of coordinates in order to transform the system into a paradifferential one with symbols which, at the positive order, are constant and purely imaginary. This allows to obtain a priori energy estimates on the Sobolev norms of the solutions.

Feola, R., & Iandoli, F. (2019). Local well-posedness for quasi-linear NLS with large Cauchy data on the circle. ANNALES DE L INSTITUT HENRI POINCARÉ. ANALYSE NON LINÉAIRE, 36(1), 119-164 [10.1016/j.anihpc.2018.04.003].

Local well-posedness for quasi-linear NLS with large Cauchy data on the circle

Feola R.;
2019

Abstract

We prove local in time well-posedness for a large class of quasilinear Hamiltonian, or parity preserving, Schrödinger equations on the circle. After a paralinearization of the equation, we perform several paradifferential changes of coordinates in order to transform the system into a paradifferential one with symbols which, at the positive order, are constant and purely imaginary. This allows to obtain a priori energy estimates on the Sobolev norms of the solutions.
Feola, R., & Iandoli, F. (2019). Local well-posedness for quasi-linear NLS with large Cauchy data on the circle. ANNALES DE L INSTITUT HENRI POINCARÉ. ANALYSE NON LINÉAIRE, 36(1), 119-164 [10.1016/j.anihpc.2018.04.003].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11590/397002
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact