Groundwater is a primary water source which supplies more than 2 billion people. The increasing population and urbanization of rural areas stresses and depletes the groundwater systems, reducing the groundwater quality. Among the emerging contaminants, microplastics (MPs) are becoming an important issue due to their persistency in the environment. Seepage through the pores and fractures as well as the interaction with colloidal aggregates can partially affect the MPs dynamics in the subsoil, making the detection of the MPs in the groundwater systems challenging. Based on literature, a critical analysis of MPs in groundwater is presented from a hydrogeological point of view. In addition, a review of the MPs data potentially affecting the groundwater systems are included. MPs in groundwater may have several sources, including the atmosphere, the interaction with surface water bodies, urban infrastructures, or agricultural soils. The characterization of both the groundwater dynamics and the heterogeneity of MPs is suggested, proposing a new framework named “Hydrogeoplastic Model”. MPs detection methods aimed at characterizing the smaller fragments are necessary to clarify the fate of these contaminants in the aquifers. This review also aims to support future research on MP contamination in groundwater, pointing out the current knowledge and the future risks which could affect groundwater resources worldwide.

Viaroli, S., Lancia, M., & Re, V. (2022). Microplastics contamination of groundwater: Current evidence and future perspectives. A review. SCIENCE OF THE TOTAL ENVIRONMENT, 824, 153851 [10.1016/j.scitotenv.2022.153851].

Microplastics contamination of groundwater: Current evidence and future perspectives. A review

Viaroli S.
;
2022

Abstract

Groundwater is a primary water source which supplies more than 2 billion people. The increasing population and urbanization of rural areas stresses and depletes the groundwater systems, reducing the groundwater quality. Among the emerging contaminants, microplastics (MPs) are becoming an important issue due to their persistency in the environment. Seepage through the pores and fractures as well as the interaction with colloidal aggregates can partially affect the MPs dynamics in the subsoil, making the detection of the MPs in the groundwater systems challenging. Based on literature, a critical analysis of MPs in groundwater is presented from a hydrogeological point of view. In addition, a review of the MPs data potentially affecting the groundwater systems are included. MPs in groundwater may have several sources, including the atmosphere, the interaction with surface water bodies, urban infrastructures, or agricultural soils. The characterization of both the groundwater dynamics and the heterogeneity of MPs is suggested, proposing a new framework named “Hydrogeoplastic Model”. MPs detection methods aimed at characterizing the smaller fragments are necessary to clarify the fate of these contaminants in the aquifers. This review also aims to support future research on MP contamination in groundwater, pointing out the current knowledge and the future risks which could affect groundwater resources worldwide.
Viaroli, S., Lancia, M., & Re, V. (2022). Microplastics contamination of groundwater: Current evidence and future perspectives. A review. SCIENCE OF THE TOTAL ENVIRONMENT, 824, 153851 [10.1016/j.scitotenv.2022.153851].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11590/399539
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 6
social impact