The celebrated Gaussian Schell model source with its shift-invariant degree of coherence may be the basis for devising sources with space-variant properties in the spirit of structured coherence. Starting from superpositions of Gaussian Schell model sources, we present two classes of genuine cross-spectral densities whose degree of coherence varies across the source area. The first class is based on the use of the Laplace transform while the second deals with cross-spectral densities that are shape-invariant upon paraxial propagation. For the latter, we present a set of shape-invariant cross-spectral densities for which the modal expansion can be explicitly found. We finally solve the problem of ascertain whether an assigned cross-spectral density is shape-invariant by checking if it satisfies a simple differential constraint.
Gori, F., Santarsiero, M. (2021). Variant-coherence gaussian sources. PHOTONICS, 8(9), 403 [10.3390/photonics8090403].
Variant-coherence gaussian sources
Santarsiero M.
2021-01-01
Abstract
The celebrated Gaussian Schell model source with its shift-invariant degree of coherence may be the basis for devising sources with space-variant properties in the spirit of structured coherence. Starting from superpositions of Gaussian Schell model sources, we present two classes of genuine cross-spectral densities whose degree of coherence varies across the source area. The first class is based on the use of the Laplace transform while the second deals with cross-spectral densities that are shape-invariant upon paraxial propagation. For the latter, we present a set of shape-invariant cross-spectral densities for which the modal expansion can be explicitly found. We finally solve the problem of ascertain whether an assigned cross-spectral density is shape-invariant by checking if it satisfies a simple differential constraint.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.