The celebrated Gaussian Schell model source with its shift-invariant degree of coherence may be the basis for devising sources with space-variant properties in the spirit of structured coherence. Starting from superpositions of Gaussian Schell model sources, we present two classes of genuine cross-spectral densities whose degree of coherence varies across the source area. The first class is based on the use of the Laplace transform while the second deals with cross-spectral densities that are shape-invariant upon paraxial propagation. For the latter, we present a set of shape-invariant cross-spectral densities for which the modal expansion can be explicitly found. We finally solve the problem of ascertain whether an assigned cross-spectral density is shape-invariant by checking if it satisfies a simple differential constraint.

Gori, F., & Santarsiero, M. (2021). Variant-coherence gaussian sources. PHOTONICS, 8(9), 403 [10.3390/photonics8090403].

Variant-coherence gaussian sources

Santarsiero M.
2021

Abstract

The celebrated Gaussian Schell model source with its shift-invariant degree of coherence may be the basis for devising sources with space-variant properties in the spirit of structured coherence. Starting from superpositions of Gaussian Schell model sources, we present two classes of genuine cross-spectral densities whose degree of coherence varies across the source area. The first class is based on the use of the Laplace transform while the second deals with cross-spectral densities that are shape-invariant upon paraxial propagation. For the latter, we present a set of shape-invariant cross-spectral densities for which the modal expansion can be explicitly found. We finally solve the problem of ascertain whether an assigned cross-spectral density is shape-invariant by checking if it satisfies a simple differential constraint.
Gori, F., & Santarsiero, M. (2021). Variant-coherence gaussian sources. PHOTONICS, 8(9), 403 [10.3390/photonics8090403].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11590/400771
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact