To cope with stressful conditions, including antibiotic exposure, bacteria activate the SOS response, a pathway that induces error-prone DNA repair and mutagenesis mechanisms. In most bacteria, the SOS response relies on the transcriptional repressor LexA and the co-protease RecA, the latter being also involved in homologous recombination. The role of the SOS response in stress-and antibiotic-induced mutagenesis has been characterized in detail in the model organism Escherichia coli. However, its effect on antibiotic resistance in the human pathogen Pseudomonas aeruginosa is less clear. Here, we analyzed a recA deletion mutant and confirmed, by conjugation and gene expression assays, that RecA is required for homologous recombination and SOS response induction in P. aeruginosa. MIC assays demonstrated that RecA affects P. aeruginosa resistance only towards fluoroquinolones and genotoxic agents. The comparison of antibiotic-resistant mutant frequency between treated and untreated cultures revealed that, among the antibiotics tested, only fluoroquinolones induced mutagenesis in P. aeruginosa. Notably, both RecA and error-prone DNA polymerases were found to be dispensable for this process. These data demonstrate that the SOS response is not required for antibiotic-induced mutagenesis in P. aeruginosa, suggesting that RecA inhibition is not a suitable strategy to target antibiotic-induced emergence of resistance in this pathogen.

Mercolino, J., Sciuto, A.L., Spinnato, M.C., Rampioni, G., Imperi, F. (2022). RecA and Specialized Error-Prone DNA Polymerases Are Not Required for Mutagenesis and Antibiotic Resistance Induced by Fluoroquinolones in Pseudomonas aeruginosa. ANTIBIOTICS, 11(3), 325 [10.3390/antibiotics11030325].

RecA and Specialized Error-Prone DNA Polymerases Are Not Required for Mutagenesis and Antibiotic Resistance Induced by Fluoroquinolones in Pseudomonas aeruginosa

Mercolino J.;Spinnato M. C.;Rampioni G.;Imperi F.
2022-01-01

Abstract

To cope with stressful conditions, including antibiotic exposure, bacteria activate the SOS response, a pathway that induces error-prone DNA repair and mutagenesis mechanisms. In most bacteria, the SOS response relies on the transcriptional repressor LexA and the co-protease RecA, the latter being also involved in homologous recombination. The role of the SOS response in stress-and antibiotic-induced mutagenesis has been characterized in detail in the model organism Escherichia coli. However, its effect on antibiotic resistance in the human pathogen Pseudomonas aeruginosa is less clear. Here, we analyzed a recA deletion mutant and confirmed, by conjugation and gene expression assays, that RecA is required for homologous recombination and SOS response induction in P. aeruginosa. MIC assays demonstrated that RecA affects P. aeruginosa resistance only towards fluoroquinolones and genotoxic agents. The comparison of antibiotic-resistant mutant frequency between treated and untreated cultures revealed that, among the antibiotics tested, only fluoroquinolones induced mutagenesis in P. aeruginosa. Notably, both RecA and error-prone DNA polymerases were found to be dispensable for this process. These data demonstrate that the SOS response is not required for antibiotic-induced mutagenesis in P. aeruginosa, suggesting that RecA inhibition is not a suitable strategy to target antibiotic-induced emergence of resistance in this pathogen.
2022
Mercolino, J., Sciuto, A.L., Spinnato, M.C., Rampioni, G., Imperi, F. (2022). RecA and Specialized Error-Prone DNA Polymerases Are Not Required for Mutagenesis and Antibiotic Resistance Induced by Fluoroquinolones in Pseudomonas aeruginosa. ANTIBIOTICS, 11(3), 325 [10.3390/antibiotics11030325].
File in questo prodotto:
File Dimensione Formato  
Mercolino2022_antibiotics-11-00325.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: DRM non definito
Dimensione 1.22 MB
Formato Adobe PDF
1.22 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/401919
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact