The maximum critical temperature for superconductivity in pressurized hydrides appears at the top of superconducting domes in T c vs pressure curves at a particular pressure, which is not predicted by standard superconductivity theories. The high-order anisotropic Van Hove singularity near the Fermi level observed in band-structure calculations of pressurized sulfur hydride, typical of a supermetal, has been associated with the array of metallic hydrogen wire modules forming a nanoscale heterostructure at an atomic limit called the superstripe phase. Here, we propose that pressurized sulfur hydrides behave as a heterostructure made of a nanoscale superlattice of interacting quantum wires with a multicomponent electronic structure. We present first-principles quantum calculation of a universal superconducting dome where T c amplification in multi-gap superconductivity is driven by the Fano–Feshbach resonance due to a configuration interaction between open and closed pairing channels, i.e., between multiple gaps in the BCS regime, resonating with a single gap in the BCS–Bose–Einstein condensation crossover regime. In the proposed three dimensional phase diagram, the critical temperature shows a superconducting dome where T c is a function of two variables: (i) the Lifshitz parameter ( η ) measuring the separation of the chemical potential from the Lifshitz transition normalized by the inter-wire coupling and (ii) the effective electron–phonon coupling (g) in the appearing new Fermi surface including phonon softening. The results will be of help for material design of room-temperature superconductors at ambient pressure.

Mazziotti, M.V., Raimondi, R., Valletta, A., Campi, G., & Bianconi, A. (2021). Resonant multi-gap superconductivity at room temperature near a Lifshitz topological transition in sulfur hydrides. JOURNAL OF APPLIED PHYSICS, 130(17), 173904 [10.1063/5.0070875].

Resonant multi-gap superconductivity at room temperature near a Lifshitz topological transition in sulfur hydrides

Mazziotti, Maria Vittoria
Membro del Collaboration Group
;
Raimondi, Roberto
Membro del Collaboration Group
;
2021

Abstract

The maximum critical temperature for superconductivity in pressurized hydrides appears at the top of superconducting domes in T c vs pressure curves at a particular pressure, which is not predicted by standard superconductivity theories. The high-order anisotropic Van Hove singularity near the Fermi level observed in band-structure calculations of pressurized sulfur hydride, typical of a supermetal, has been associated with the array of metallic hydrogen wire modules forming a nanoscale heterostructure at an atomic limit called the superstripe phase. Here, we propose that pressurized sulfur hydrides behave as a heterostructure made of a nanoscale superlattice of interacting quantum wires with a multicomponent electronic structure. We present first-principles quantum calculation of a universal superconducting dome where T c amplification in multi-gap superconductivity is driven by the Fano–Feshbach resonance due to a configuration interaction between open and closed pairing channels, i.e., between multiple gaps in the BCS regime, resonating with a single gap in the BCS–Bose–Einstein condensation crossover regime. In the proposed three dimensional phase diagram, the critical temperature shows a superconducting dome where T c is a function of two variables: (i) the Lifshitz parameter ( η ) measuring the separation of the chemical potential from the Lifshitz transition normalized by the inter-wire coupling and (ii) the effective electron–phonon coupling (g) in the appearing new Fermi surface including phonon softening. The results will be of help for material design of room-temperature superconductors at ambient pressure.
Mazziotti, M.V., Raimondi, R., Valletta, A., Campi, G., & Bianconi, A. (2021). Resonant multi-gap superconductivity at room temperature near a Lifshitz topological transition in sulfur hydrides. JOURNAL OF APPLIED PHYSICS, 130(17), 173904 [10.1063/5.0070875].
File in questo prodotto:
File Dimensione Formato  
Resonant.pdf

accesso aperto

Descrizione: File PDF
Tipologia: Documento in Pre-print
Licenza: DRM non definito
Dimensione 4.65 MB
Formato Adobe PDF
4.65 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11590/401939
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 3
social impact