Volcanic materials can experience up to eleven orders of magnitude of cooling rate (qc) starting from 10–5 K s−1. The glassy component of volcanic material is routinely measured via differential scanning calorimeter (DSC) to obtain qc through the determination of the glass fictive temperature (Tf). Conventional DSC (C-DSC), which has been employed for decades, can only access a relatively small range of qc (from ~ 10–2 to ~ 1 K s−1). Therefore, extrapolations up to six orders of magnitude of C-DSC data are necessary to derive qc of glasses quenched both at extremely low and high qc. Here, we test the reliability of such extrapolations by combining C-DSC with the recently introduced flash calorimetry (F-DSC). F-DSC enables to extend the qc exploration up to 104 K s−1. We use three synthetic glasses as analogs of volcanic melts. We first apply a normalization procedure of heat flow data for both C-DSC and F-DSC to derive Tf as a function of experimental qc, following the “unified area-matching” approach. The obtained Tf–qc relationship shows that Arrhenius models, widely adopted in previous studies, are only valid for qc determination within the calibration range. In contrast, a non-Arrhenius model better captures qc values, especially when a significant extrapolation is required. We, therefore, present a practical “how-to” protocol for estimating qc using DSC.
Scarani, A., Vona, A., Di Genova, D., Al-Mukadam, R., Romano, C., Deubener, J. (2022). Determination of cooling rates of glasses over four orders of magnitude. CONTRIBUTIONS TO MINERALOGY AND PETROLOGY, 177(3) [10.1007/s00410-022-01899-5].
Determination of cooling rates of glasses over four orders of magnitude
Scarani A.
;Vona A.;Romano C.;
2022-01-01
Abstract
Volcanic materials can experience up to eleven orders of magnitude of cooling rate (qc) starting from 10–5 K s−1. The glassy component of volcanic material is routinely measured via differential scanning calorimeter (DSC) to obtain qc through the determination of the glass fictive temperature (Tf). Conventional DSC (C-DSC), which has been employed for decades, can only access a relatively small range of qc (from ~ 10–2 to ~ 1 K s−1). Therefore, extrapolations up to six orders of magnitude of C-DSC data are necessary to derive qc of glasses quenched both at extremely low and high qc. Here, we test the reliability of such extrapolations by combining C-DSC with the recently introduced flash calorimetry (F-DSC). F-DSC enables to extend the qc exploration up to 104 K s−1. We use three synthetic glasses as analogs of volcanic melts. We first apply a normalization procedure of heat flow data for both C-DSC and F-DSC to derive Tf as a function of experimental qc, following the “unified area-matching” approach. The obtained Tf–qc relationship shows that Arrhenius models, widely adopted in previous studies, are only valid for qc determination within the calibration range. In contrast, a non-Arrhenius model better captures qc values, especially when a significant extrapolation is required. We, therefore, present a practical “how-to” protocol for estimating qc using DSC.File | Dimensione | Formato | |
---|---|---|---|
s00410-022-01899-5.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
2.42 MB
Formato
Adobe PDF
|
2.42 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.