This study aims to isolate and characterize a novel rhamnolipid producer within the recent bioremediation approaches for treating hydrocarbon-contaminated soils in Algeria. In this context, from a hydrocarbon-contaminated soil, a newly bacterium designated LGMS7 was screened and identified, belonged to the Pseudomonas genus, and was closely related to Pseudomonas mucidolens, with a 16S rRNA sequence similarity of 99.05%. This strain was found to use different hydrocarbons and oils as a sole carbon and energy source for growth. It showed a stable emulsification index E24 (%) of 66.66% ± 3.46 when growing in mineral salts medium (MSM) supplemented with 2% (v/v) glycerol after incubation for 6 days at 30 °C. Interestingly, it was also able to reduce the surface tension of the cell-free supernatant to around 30 ± 0.65 mN m−1 with a critical micelle concentration (CMC) of 800 mg l−1. It was found to be able to produce around 1260 ± 0.57 mg l−1 as the yield of rhamnolipid production. Its biosurfactant has demonstrated excellent stability against pH (pH 2.0–12.0), salinity (0–150 g l−1), and temperature (−20 to 121 °C). Based on various chromatographic and spectroscopic techniques (i.e., TLC, FTIR, 1H-NMR), it was found to belong to the glycolipid class (i.e., rhamnolipids). Taken altogether, the strain LGMS7 and its biosurfactant display interesting biotechnological capabilities for the bioremediation of hydrocarbon-contaminated sites. To the best of our knowledge, this is the first study that described the production of biosurfactants by Pseudomonas mucidolens species.

Chaida, A., Chebbi, A., Bensalah, F., & Franzetti, A. (2021). Isolation and characterization of a novel rhamnolipid producer Pseudomonas sp. LGMS7 from a highly contaminated site in Ain El Arbaa region of Ain Temouchent, Algeria, 11(4), 200 [10.1007/s13205-021-02751-6].

Isolation and characterization of a novel rhamnolipid producer Pseudomonas sp. LGMS7 from a highly contaminated site in Ain El Arbaa region of Ain Temouchent, Algeria

Chebbi A.
;
2021

Abstract

This study aims to isolate and characterize a novel rhamnolipid producer within the recent bioremediation approaches for treating hydrocarbon-contaminated soils in Algeria. In this context, from a hydrocarbon-contaminated soil, a newly bacterium designated LGMS7 was screened and identified, belonged to the Pseudomonas genus, and was closely related to Pseudomonas mucidolens, with a 16S rRNA sequence similarity of 99.05%. This strain was found to use different hydrocarbons and oils as a sole carbon and energy source for growth. It showed a stable emulsification index E24 (%) of 66.66% ± 3.46 when growing in mineral salts medium (MSM) supplemented with 2% (v/v) glycerol after incubation for 6 days at 30 °C. Interestingly, it was also able to reduce the surface tension of the cell-free supernatant to around 30 ± 0.65 mN m−1 with a critical micelle concentration (CMC) of 800 mg l−1. It was found to be able to produce around 1260 ± 0.57 mg l−1 as the yield of rhamnolipid production. Its biosurfactant has demonstrated excellent stability against pH (pH 2.0–12.0), salinity (0–150 g l−1), and temperature (−20 to 121 °C). Based on various chromatographic and spectroscopic techniques (i.e., TLC, FTIR, 1H-NMR), it was found to belong to the glycolipid class (i.e., rhamnolipids). Taken altogether, the strain LGMS7 and its biosurfactant display interesting biotechnological capabilities for the bioremediation of hydrocarbon-contaminated sites. To the best of our knowledge, this is the first study that described the production of biosurfactants by Pseudomonas mucidolens species.
Chaida, A., Chebbi, A., Bensalah, F., & Franzetti, A. (2021). Isolation and characterization of a novel rhamnolipid producer Pseudomonas sp. LGMS7 from a highly contaminated site in Ain El Arbaa region of Ain Temouchent, Algeria, 11(4), 200 [10.1007/s13205-021-02751-6].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11590/413788
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact