With the aim to identify future challenges and opportunities in vegetation science, we brought together a group of 22 early career vegetation scientists from diverse backgrounds to perform a horizon scan. In this contribution, we present a selection of 15 topics that were ranked by participants as the most emergent and impactful for vegetation science in the face of global change. We highlight methodological tools that we expect will play a critical role in resolving emerging issues by providing ways to unveil new aspects of plant community dynamics and structure. These tools include next generation sequencing, plant spectral imaging, process-based species distribution models, resurveying studies and permanent plots. Further, we stress the need to integrate long-term monitoring, the study of novel ecosystems, below-ground traits, pollination interactions and global networks of near-surface microclimate data at fine spatio-temporal resolutions to fully understand and predict the impacts of climate change on vegetation dynamics. We also emphasize the need to integrate traditional forms of knowledge and a diversity of stakeholders into research, teaching, management and policy-making to advance the field of vegetation science. The conclusions reached by this horizon scan naturally reflect the background, expertise and interests of a representative pool of early career vegetation scientists, which should serve as basis for future developments in the field.

Yannelli, F.A., Bazzichetto, M., Conradi, T., Pattison, Z., Andrade, B.O., Anibaba, Q.A., et al. (2022). Fifteen emerging challenges and opportunities for vegetation science: A horizon scan by early career researchers. JOURNAL OF VEGETATION SCIENCE, 33(1) [10.1111/jvs.13119].

Fifteen emerging challenges and opportunities for vegetation science: A horizon scan by early career researchers

Bazzichetto M.;Sperandii M. G.
2022-01-01

Abstract

With the aim to identify future challenges and opportunities in vegetation science, we brought together a group of 22 early career vegetation scientists from diverse backgrounds to perform a horizon scan. In this contribution, we present a selection of 15 topics that were ranked by participants as the most emergent and impactful for vegetation science in the face of global change. We highlight methodological tools that we expect will play a critical role in resolving emerging issues by providing ways to unveil new aspects of plant community dynamics and structure. These tools include next generation sequencing, plant spectral imaging, process-based species distribution models, resurveying studies and permanent plots. Further, we stress the need to integrate long-term monitoring, the study of novel ecosystems, below-ground traits, pollination interactions and global networks of near-surface microclimate data at fine spatio-temporal resolutions to fully understand and predict the impacts of climate change on vegetation dynamics. We also emphasize the need to integrate traditional forms of knowledge and a diversity of stakeholders into research, teaching, management and policy-making to advance the field of vegetation science. The conclusions reached by this horizon scan naturally reflect the background, expertise and interests of a representative pool of early career vegetation scientists, which should serve as basis for future developments in the field.
2022
Yannelli, F.A., Bazzichetto, M., Conradi, T., Pattison, Z., Andrade, B.O., Anibaba, Q.A., et al. (2022). Fifteen emerging challenges and opportunities for vegetation science: A horizon scan by early career researchers. JOURNAL OF VEGETATION SCIENCE, 33(1) [10.1111/jvs.13119].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/416030
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact