Understanding radicalization pathways, drivers, and factors is essential for the effective design of prevention and counter-radicalization programs. Traditionally, the primary methods used by social scientists to detect these drivers and factors include literature reviews, qualitative interviews, focus groups, and quantitative methods based on surveys. This article proposes to complement social science approaches with computational methods to detect these factors automatically by analyzing the language signals expressed in social networks. To this end, the article categorizes radicalization drivers and factors following the micro, meso, and macro levels used in the social sciences. It identifies the corresponding language signals and available language resources. Then, a computational system is developed to monitor these language signals. In addition, this article proposes semantic technologies since they offer unique exploration, query, and discovery capabilities. The system was evaluated based on a set of competency questions that show the benefits of this approach. View Full-Text.

Araque, Ó., Sánchez-Rada, J.F., Carrera, Á., Iglesias, C.Á., Tardío, J., García-Grao, G., et al. (2022). Making Sense of Language Signals for Monitoring Radicalization. APPLIED SCIENCES, 12(17), 1-27 [10.3390/app12178413].

Making Sense of Language Signals for Monitoring Radicalization

Musolino, Santina
;
Antonelli, Francesco
2022-01-01

Abstract

Understanding radicalization pathways, drivers, and factors is essential for the effective design of prevention and counter-radicalization programs. Traditionally, the primary methods used by social scientists to detect these drivers and factors include literature reviews, qualitative interviews, focus groups, and quantitative methods based on surveys. This article proposes to complement social science approaches with computational methods to detect these factors automatically by analyzing the language signals expressed in social networks. To this end, the article categorizes radicalization drivers and factors following the micro, meso, and macro levels used in the social sciences. It identifies the corresponding language signals and available language resources. Then, a computational system is developed to monitor these language signals. In addition, this article proposes semantic technologies since they offer unique exploration, query, and discovery capabilities. The system was evaluated based on a set of competency questions that show the benefits of this approach. View Full-Text.
2022
Araque, Ó., Sánchez-Rada, J.F., Carrera, Á., Iglesias, C.Á., Tardío, J., García-Grao, G., et al. (2022). Making Sense of Language Signals for Monitoring Radicalization. APPLIED SCIENCES, 12(17), 1-27 [10.3390/app12178413].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/416167
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact