Unlike bosons, fermions always have a non-trivial entanglement. Intuitively, Slater determinantal states should be the least entangled states. To make this intuition precise we investigate entropy and entanglement of fermionic states and prove some extremal and near extremal properties of reduced density matrices of Slater determinantal states.

Carlen, E.a., Lieb, E.h., Reuvers, R. (2016). Entropy and Entanglement Bounds for Reduced Density Matrices of Fermionic States. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 344(3), 655-671 [10.1007/s00220-016-2651-6].

Entropy and Entanglement Bounds for Reduced Density Matrices of Fermionic States

Reuvers, R
2016

Abstract

Unlike bosons, fermions always have a non-trivial entanglement. Intuitively, Slater determinantal states should be the least entangled states. To make this intuition precise we investigate entropy and entanglement of fermionic states and prove some extremal and near extremal properties of reduced density matrices of Slater determinantal states.
Carlen, E.a., Lieb, E.h., Reuvers, R. (2016). Entropy and Entanglement Bounds for Reduced Density Matrices of Fermionic States. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 344(3), 655-671 [10.1007/s00220-016-2651-6].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11590/416948
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact