Temporal metamaterials have been recently exploited as a novel platform for conceiving several electromagnetic and optical devices based on the anomalous scattering response arising at a single change or multiple sudden changes in the material properties. However, they are difficult to implement in realistic scenarios by switching the permittivity of a material in time, and new strategies to achieve time interfaces in a feasible manner must be identified. In this paper, we investigate the possibility to realize a temporal metamaterial without acting on the material properties, but rather on the effective refractive index and wave impedance perceived by the wave during the propagation in an empty guiding structure by varying the boundaries in time. We demonstrate analytically and through numerical experiments that suddenly changing the structural dispersion of a parallel-plate waveguide by varying boundary conditions will induce an effective temporal interface. The proposed concept can be extended to temporally controlled metasurfaces, opening an easier path to the design and realization of novel devices based on time-varying metamaterials at microwave and optical frequencies.

Stefanini, L., Yin, S., Ramaccia, D., Alù, A., Toscano, A., Bilotti, F. (2022). Temporal interfaces by instantaneously varying boundary conditions. PHYSICAL REVIEW. B, 106(9), 094312 [10.1103/physrevb.106.094312].

Temporal interfaces by instantaneously varying boundary conditions

Luca Stefanini;Davide Ramaccia;Alessandro Toscano;Filiberto Bilotti
2022-01-01

Abstract

Temporal metamaterials have been recently exploited as a novel platform for conceiving several electromagnetic and optical devices based on the anomalous scattering response arising at a single change or multiple sudden changes in the material properties. However, they are difficult to implement in realistic scenarios by switching the permittivity of a material in time, and new strategies to achieve time interfaces in a feasible manner must be identified. In this paper, we investigate the possibility to realize a temporal metamaterial without acting on the material properties, but rather on the effective refractive index and wave impedance perceived by the wave during the propagation in an empty guiding structure by varying the boundaries in time. We demonstrate analytically and through numerical experiments that suddenly changing the structural dispersion of a parallel-plate waveguide by varying boundary conditions will induce an effective temporal interface. The proposed concept can be extended to temporally controlled metasurfaces, opening an easier path to the design and realization of novel devices based on time-varying metamaterials at microwave and optical frequencies.
2022
Stefanini, L., Yin, S., Ramaccia, D., Alù, A., Toscano, A., Bilotti, F. (2022). Temporal interfaces by instantaneously varying boundary conditions. PHYSICAL REVIEW. B, 106(9), 094312 [10.1103/physrevb.106.094312].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/422818
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 13
social impact