We define a class of Markovian parallel dynamics for spin systems on arbitrary graphs with nearest neighbor interaction described by a Hamiltonian function H(sigma). These dynamics turn out to be reversible and their stationary measure is explicitly determined. Convergence to equilibrium and relation of the stationary measure to the usual Gibbs measure are discussed when the dynamics is defined on Z(2). Further it is shown how these dynamics can be used to define natively parallel algorithms to face problems in the context of combinatorial optimization.

Apollonio, V., D'Autilia, R., Scoppola, B., Scoppola, E., Troiani, A. (2022). Shaken Dynamics: An Easy Way to Parallel Markov Chain Monte Carlo. JOURNAL OF STATISTICAL PHYSICS, 189(3) [10.1007/s10955-022-03004-3].

Shaken Dynamics: An Easy Way to Parallel Markov Chain Monte Carlo

Apollonio V.;D'Autilia R.;Scoppola E.;Troiani A.
2022-01-01

Abstract

We define a class of Markovian parallel dynamics for spin systems on arbitrary graphs with nearest neighbor interaction described by a Hamiltonian function H(sigma). These dynamics turn out to be reversible and their stationary measure is explicitly determined. Convergence to equilibrium and relation of the stationary measure to the usual Gibbs measure are discussed when the dynamics is defined on Z(2). Further it is shown how these dynamics can be used to define natively parallel algorithms to face problems in the context of combinatorial optimization.
Apollonio, V., D'Autilia, R., Scoppola, B., Scoppola, E., Troiani, A. (2022). Shaken Dynamics: An Easy Way to Parallel Markov Chain Monte Carlo. JOURNAL OF STATISTICAL PHYSICS, 189(3) [10.1007/s10955-022-03004-3].
File in questo prodotto:
File Dimensione Formato  
shaken_fin.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 755.6 kB
Formato Adobe PDF
755.6 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/425647
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact