The objective of a sound event detector is to recognize anomalies in an audio clip and return their onset and offset. However, detecting sound events in noisy environments is a challenging task. This is due to the fact that in a real audio signal several sound sources co-exist and that the characteristics of polyphonic audio are different from isolated recordings. It is also necessary to consider the presence of noise (e.g. thermal and environmental). In this contribution, we present a sound anomaly detection system based on a fully convolutional network which exploits image spatial filtering and an Atrous Spatial Pyramid Pooling module. To cope with the lack of datasets specifically designed for sound event detection, a dataset for the specific application of noisy bus environments has been designed. The dataset has been obtained by mixing background audio files, recorded in a real environment, with anomalous events extracted from monophonic collections of labelled audios. The performances of the proposed system have been evaluated through segment-based metrics such as error rate, recall, and F1-Score. Moreover, robustness and precision have been evaluated through four different tests. The analysis of the results shows that the proposed sound event detector outperforms both state-of-the-art methods and general purpose deep learning-solutions.

Neri, M., Battisti, F., Neri, A., Carli, M. (2022). Sound Event Detection for Human Safety and Security in Noisy Environments. IEEE ACCESS, 1-1 [10.1109/ACCESS.2022.3231681].

Sound Event Detection for Human Safety and Security in Noisy Environments

Neri, Michael;Neri, Alessandro;Carli, Marco
2022-01-01

Abstract

The objective of a sound event detector is to recognize anomalies in an audio clip and return their onset and offset. However, detecting sound events in noisy environments is a challenging task. This is due to the fact that in a real audio signal several sound sources co-exist and that the characteristics of polyphonic audio are different from isolated recordings. It is also necessary to consider the presence of noise (e.g. thermal and environmental). In this contribution, we present a sound anomaly detection system based on a fully convolutional network which exploits image spatial filtering and an Atrous Spatial Pyramid Pooling module. To cope with the lack of datasets specifically designed for sound event detection, a dataset for the specific application of noisy bus environments has been designed. The dataset has been obtained by mixing background audio files, recorded in a real environment, with anomalous events extracted from monophonic collections of labelled audios. The performances of the proposed system have been evaluated through segment-based metrics such as error rate, recall, and F1-Score. Moreover, robustness and precision have been evaluated through four different tests. The analysis of the results shows that the proposed sound event detector outperforms both state-of-the-art methods and general purpose deep learning-solutions.
Neri, M., Battisti, F., Neri, A., Carli, M. (2022). Sound Event Detection for Human Safety and Security in Noisy Environments. IEEE ACCESS, 1-1 [10.1109/ACCESS.2022.3231681].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/425848
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact