We develop a method for the determination of the top quark mass using the distribution of the decay length of the B-hadrons originating from its decay. This technique is based on our earlier observation regarding the location of the peak of the b quark energy distribution. Such "energy-peak" methods enjoy a greater degree of model-independence with respect to the kinematics of top quark production compared to earlier proposals. The CMS experiment has implemented the energy-peak method using associated b-jet energy as an approximation for b quark energy. The new method uses B-hadron decay lengths, which are related to b quark energies by convolution. The advantage of the new decay length method is that it can be applied in a way that evades jet-energy scale (JES) uncertainties. Indeed, CMS has measured the top quark mass using B-hadron decay lengths, but they did not incorporate the energy-peak method. Therefore, mismodeling of top quark transverse momentum remains a large uncertainty in their result. We demonstrate that, using energy-peak methods, this systematic uncertainty can become negligible. We show that with the current LHC data set, a sub-GeV statistical uncertainty on the top quark mass can be attained with this method. To achieve a comparable systematic uncertainty as is true for many methods based on exclusive or semi-inclusive observables using hadrons, we find that the quark-hadron transition needs to be described significantly better than is the case with current fragmentation functions and hadronization models.

Agashe, K., Airen, S., Franceschini, R., Incandela, J., Kim, D., Sathyan, D. (2023). Energy-peak based method to measure top quark mass via B-hadron decay lengths. JOURNAL OF HIGH ENERGY PHYSICS, 2023(6) [10.1007/jhep06(2023)021].

Energy-peak based method to measure top quark mass via B-hadron decay lengths

Roberto Franceschini;
2023-01-01

Abstract

We develop a method for the determination of the top quark mass using the distribution of the decay length of the B-hadrons originating from its decay. This technique is based on our earlier observation regarding the location of the peak of the b quark energy distribution. Such "energy-peak" methods enjoy a greater degree of model-independence with respect to the kinematics of top quark production compared to earlier proposals. The CMS experiment has implemented the energy-peak method using associated b-jet energy as an approximation for b quark energy. The new method uses B-hadron decay lengths, which are related to b quark energies by convolution. The advantage of the new decay length method is that it can be applied in a way that evades jet-energy scale (JES) uncertainties. Indeed, CMS has measured the top quark mass using B-hadron decay lengths, but they did not incorporate the energy-peak method. Therefore, mismodeling of top quark transverse momentum remains a large uncertainty in their result. We demonstrate that, using energy-peak methods, this systematic uncertainty can become negligible. We show that with the current LHC data set, a sub-GeV statistical uncertainty on the top quark mass can be attained with this method. To achieve a comparable systematic uncertainty as is true for many methods based on exclusive or semi-inclusive observables using hadrons, we find that the quark-hadron transition needs to be described significantly better than is the case with current fragmentation functions and hadronization models.
2023
Agashe, K., Airen, S., Franceschini, R., Incandela, J., Kim, D., Sathyan, D. (2023). Energy-peak based method to measure top quark mass via B-hadron decay lengths. JOURNAL OF HIGH ENERGY PHYSICS, 2023(6) [10.1007/jhep06(2023)021].
File in questo prodotto:
File Dimensione Formato  
JHEP06(2023)021.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 570.42 kB
Formato Adobe PDF
570.42 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/444968
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact