Characterization of quantum objects, being states, processes, or measurements, complemented by previous knowledge about them is a valuable approach, especially as it leads to routine procedures for real-life components. To this end, machine learning algorithms have demonstrated to successfully operate in presence of noise, especially for estimating specific physical parameters. Here, it is shown that a neural network (NN) can improve the tomographic estimate of parameters by including a convolutional stage. This technique is applied to quantum process tomography for the characterization of several quantum channels. A stable and reliable operation is demonstrated that is achievable by training the network only with simulated data. The obtained results show the viability of this approach as an effective tool based on a completely new paradigm for the employment of NNs operating on classical data produced by quantum systems.

Guarneri, M., Gianani, I., Barbieri, M., Chiuri, A. (2023). Improved Tomographic Estimates by Specialized Neural Networks. ADVANCED QUANTUM TECHNOLOGIES [10.1002/qute.202300027].

Improved Tomographic Estimates by Specialized Neural Networks

Gianani, I;Barbieri, M;
2023-01-01

Abstract

Characterization of quantum objects, being states, processes, or measurements, complemented by previous knowledge about them is a valuable approach, especially as it leads to routine procedures for real-life components. To this end, machine learning algorithms have demonstrated to successfully operate in presence of noise, especially for estimating specific physical parameters. Here, it is shown that a neural network (NN) can improve the tomographic estimate of parameters by including a convolutional stage. This technique is applied to quantum process tomography for the characterization of several quantum channels. A stable and reliable operation is demonstrated that is achievable by training the network only with simulated data. The obtained results show the viability of this approach as an effective tool based on a completely new paradigm for the employment of NNs operating on classical data produced by quantum systems.
2023
Guarneri, M., Gianani, I., Barbieri, M., Chiuri, A. (2023). Improved Tomographic Estimates by Specialized Neural Networks. ADVANCED QUANTUM TECHNOLOGIES [10.1002/qute.202300027].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/446169
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact