Telomere length can be maintained either by the telomerase enzyme or by alternative lengthening of telomeres (ALT), which is based on telomeric recombination. However, both mechanisms are inactive in most human somatic cells. ATRX has been previously identified as an ALT repressor gene. Nonetheless, TP53 is also deficient in most ALT cell lines, and previous works showed that it is an inhibitor of homologous recombination (HR). Despite this, the role of p53 as an ALT repressor has not been previously examined. Therefore, we investigated the effects of p53 and ATRX inhibition on normal human fibroblasts (devoid of any mutation), in the presence or absence of X-ray-induced telomeric damage. Performing immunofluorescence with antibodies for RAD51, H2AX, and TRF1 (for studying HR-mediated DNA damage repair) and CO-FISH (for telomeric sister chromatid exchanges), we observed that HR is a normal mechanism for the repair of telomeric damage, present also in noncancer cells. Moreover, we discovered that telomeric HR, as for HR in general, is significantly inhibited by p53. Indeed, we observed that inhibition of p53 drastically increases telomeric sister chromatid exchanges. We also confirmed that ATRX inhibition increases telomeric recombination. In particular, we observed an increase in crossover products, but a much higher increase in noncrossover products.
Udroiu, I., Marinaccio, J., Sgura, A. (2023). Inhibition of p53 and ATRX increases telomeric recombination in primary fibroblasts. FEBS OPEN BIO, 13(9), 1683-1698 [10.1002/2211-5463.13680].
Inhibition of p53 and ATRX increases telomeric recombination in primary fibroblasts
Udroiu, Ion;Marinaccio, Jessica;Sgura, Antonella
2023-01-01
Abstract
Telomere length can be maintained either by the telomerase enzyme or by alternative lengthening of telomeres (ALT), which is based on telomeric recombination. However, both mechanisms are inactive in most human somatic cells. ATRX has been previously identified as an ALT repressor gene. Nonetheless, TP53 is also deficient in most ALT cell lines, and previous works showed that it is an inhibitor of homologous recombination (HR). Despite this, the role of p53 as an ALT repressor has not been previously examined. Therefore, we investigated the effects of p53 and ATRX inhibition on normal human fibroblasts (devoid of any mutation), in the presence or absence of X-ray-induced telomeric damage. Performing immunofluorescence with antibodies for RAD51, H2AX, and TRF1 (for studying HR-mediated DNA damage repair) and CO-FISH (for telomeric sister chromatid exchanges), we observed that HR is a normal mechanism for the repair of telomeric damage, present also in noncancer cells. Moreover, we discovered that telomeric HR, as for HR in general, is significantly inhibited by p53. Indeed, we observed that inhibition of p53 drastically increases telomeric sister chromatid exchanges. We also confirmed that ATRX inhibition increases telomeric recombination. In particular, we observed an increase in crossover products, but a much higher increase in noncrossover products.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.