We discuss existence results for a quasi-linear elliptic equation of critical Sobolev growth [3,14] in the low-dimensional case, where the problem has a global character which is encoded in sign properties of the “regular” part for the corresponding Green’s function as in [9,11].
Angeloni, S., Esposito, P. (2023). The quasi-linear Brezis-Nirenberg problem in low dimensions. JOURNAL OF FUNCTIONAL ANALYSIS, 286(1) [10.1016/j.jfa.2023.110176].
The quasi-linear Brezis-Nirenberg problem in low dimensions
Angeloni S.;Esposito P.
2023-01-01
Abstract
We discuss existence results for a quasi-linear elliptic equation of critical Sobolev growth [3,14] in the low-dimensional case, where the problem has a global character which is encoded in sign properties of the “regular” part for the corresponding Green’s function as in [9,11].File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
AngeloniEsposito.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Copyright dell'editore
Dimensione
482.34 kB
Formato
Adobe PDF
|
482.34 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.