We discuss existence results for a quasi-linear elliptic equation of critical Sobolev growth [3,14] in the low-dimensional case, where the problem has a global character which is encoded in sign properties of the “regular” part for the corresponding Green’s function as in [9,11].

Angeloni, S., Esposito, P. (2023). The quasi-linear Brezis-Nirenberg problem in low dimensions. JOURNAL OF FUNCTIONAL ANALYSIS, 286(1) [10.1016/j.jfa.2023.110176].

The quasi-linear Brezis-Nirenberg problem in low dimensions

Angeloni S.;Esposito P.
2023-01-01

Abstract

We discuss existence results for a quasi-linear elliptic equation of critical Sobolev growth [3,14] in the low-dimensional case, where the problem has a global character which is encoded in sign properties of the “regular” part for the corresponding Green’s function as in [9,11].
2023
Angeloni, S., Esposito, P. (2023). The quasi-linear Brezis-Nirenberg problem in low dimensions. JOURNAL OF FUNCTIONAL ANALYSIS, 286(1) [10.1016/j.jfa.2023.110176].
File in questo prodotto:
File Dimensione Formato  
AngeloniEsposito.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 482.34 kB
Formato Adobe PDF
482.34 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/460075
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact