Let D be an integral domain with quotient field K. We consider the ring of integer-valued polynomials over D, namely, Int(D) ∶= {f ∈ K[X]; f(D) ⊆ D}. In this paper we investigate when Int(D) has essentialtype properties. In particular, we give a complete characterization of when Int(D)is locally essential, locally PvMD, locally UFD, locally GCD, Krull-type or generalized Krull.

Tamoussit, A., Tartarone, F. (2023). Essential properties for rings of integer-valued polynomials. NEW YORK JOURNAL OF MATHEMATICS, 29, 467-487.

Essential properties for rings of integer-valued polynomials

Tartarone F.
Writing – Review & Editing
2023-01-01

Abstract

Let D be an integral domain with quotient field K. We consider the ring of integer-valued polynomials over D, namely, Int(D) ∶= {f ∈ K[X]; f(D) ⊆ D}. In this paper we investigate when Int(D) has essentialtype properties. In particular, we give a complete characterization of when Int(D)is locally essential, locally PvMD, locally UFD, locally GCD, Krull-type or generalized Krull.
2023
Tamoussit, A., Tartarone, F. (2023). Essential properties for rings of integer-valued polynomials. NEW YORK JOURNAL OF MATHEMATICS, 29, 467-487.
File in questo prodotto:
File Dimensione Formato  
TamTar_2021_Essential properties for Int(D) - NYJM.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 792.52 kB
Formato Adobe PDF
792.52 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/462583
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact